Skip to main content

Advertisement

Log in

Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess follicular growth after xenografting in order to understand how freezing and/or grafting may affect follicular development.

Methods

Human ovarian biopsies were used for fresh and frozen-thawed xenografting to SCID mice. After xenotransplantation, follicular morphology and proportion, oocyte and follicle diameter, and quantitative and qualitative parameters of antral follicles were analyzed.

Results

The proportion of growing follicles was significantly higher in grafted than non-grafted ovarian tissue. Follicular growth to the antral stage was observed and there was no significant difference in oocyte or follicle diameter in fresh or frozen-thawed grafts. Although no significant difference was observed in antral area or zona pellucida thickness, the theca layer in antral follicles from frozen-thawed grafted tissue was found to be significantly thinner than in fresh grafts.

Conclusion

Antral follicles obtained after grafting of frozen-thawed human ovarian tissue showed a thinner theca cell layer compared to those from fresh grafts, which could affect follicular development and function. Further studies are nevertheless warranted to confirm the identity of theca cells and assess if they retain the ability to respond to luteinizing hormone and produce androgens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demylle D, Dolmans MM. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update. 2006;12:519–35.

    Article  PubMed  Google Scholar 

  2. Donnez J, Squifflet J, Van Eyck AS, Demylle D, Jadoul P, Van Langendonckt A, et al. Restoration of ovarian function in orthotopically transplanted cryopreserved ovarian tissue: a pilot experience. Reprod Biomed Online. 2008;16:694–704.

    Article  PubMed  CAS  Google Scholar 

  3. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  4. Camboni A, Martinez-Madrid B, Dolmans MM, Amorim CA, Nottola SA, Donnez J, et al. Preservation of fertility in young cancer patients: contribution of transmission electron microscopy. Reprod Biomed Online. 2008;17:136–50.

    Article  PubMed  Google Scholar 

  5. Schubert B, Canis M, Darcha C, Artonne C, Smitz J, Grizard G. Follicular growth and estradiol follow-up after subcutaneous xenografting of fresh and cryopreserved human ovarian tissue. Fertil Steril. 2008;89:1787–94.

    Article  PubMed  Google Scholar 

  6. Kim SS, Kang HG, Kim NH, Lee HC, Lee HH. Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Hum Reprod. 2005;20:2502–8.

    Article  PubMed  Google Scholar 

  7. Schmidt KL, Andersen CY, Loft A, Byskov AG, Ernst E, Andersen AN. Follow-up of ovarian function post-chemotherapy following ovarian cryopreservation and transplantation. Hum Reprod. 2005;20:3539–46.

    Article  PubMed  CAS  Google Scholar 

  8. Dolmans MM, Donnez J, Camboni A, Demylle D, Amorim C, Van Langendonckt A, et al. IVF outcome in patients with orthotopically transplanted ovarian tissue. Hum Reprod. 2009;24:2778–87.

    Article  PubMed  Google Scholar 

  9. Gook DA, Edgar DH, Borg J, Archer J, McBain JC. Diagnostic assessment of the developmental potential of human cryopreserved ovarian tissue from multiple patients using xenografting. Hum Reprod. 2005;20:72–8.

    Article  PubMed  Google Scholar 

  10. Soleimani R, Heytens E, van den Broecke R, Rottiers I, Dhont M, Cuvelier CA, et al. Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle. Hum Reprod. 2010;25:1458–70.

    Article  PubMed  CAS  Google Scholar 

  11. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist. 2007;12:1437–42.

    Article  PubMed  Google Scholar 

  12. Piver P, Amiot C, Agnani G, Pech J, Rohrlich PS, Vidal E, et al. Two pregnancies obtained after a new technique of autotransplantation of cryopreserved ovarian tissue. In: 25th Annual Meeting of ESHRE, 28 June–1 July, 2009. Amsterdam, the Netherlands: Oxford University Press, Hum Reprod 2009:i15.

  13. Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74:122–9.

    Article  PubMed  CAS  Google Scholar 

  14. Gook DA, McCully BA, Edgar DH, McBain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001;16:417–22.

    Article  PubMed  CAS  Google Scholar 

  15. Van den Broecke R, Liu J, Handyside A, Van der Elst JC, Krausz T, Dhont M, et al. Follicular growth in fresh and cryopreserved human ovarian cortical grafts transplanted to immunodeficient mice. Eur J Obstet Gynecol Reprod Biol. 2001;97:193–201.

    Article  PubMed  Google Scholar 

  16. David A, Dolmans MM, Van Langendonckt A, Donnez J. Andrade Amorim C. Immunohistochemical localization of growth factors after cryopreservation and 3 weeks’ xenotransplantation of human ovarian tissue. Fertil Steril. 2011;95:1241–6.

    Article  PubMed  CAS  Google Scholar 

  17. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196°C. Hum Reprod. 1994;9:597–603.

    PubMed  CAS  Google Scholar 

  18. Van Eyck AS, Jordan B, Gallez B, Heilier J, Van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 2009;92:374–81.

    Article  PubMed  Google Scholar 

  19. Dolmans MM, Yuan WY, Camboni A, Torre A, Van Langendonckt A, Martinez-Madrid B, et al. Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod Biomed Online. 2008;16:705–11.

    Article  PubMed  Google Scholar 

  20. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1:81–7.

    PubMed  CAS  Google Scholar 

  21. Gook DA, Edgar DH, Borg J, Archer J, Lutjen PJ, McBain JC. Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2003;18:1772–81.

    Article  PubMed  CAS  Google Scholar 

  22. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.

    Article  PubMed  Google Scholar 

  23. Bangle Jr R, Alford WC. The chemical basis of the periodic acid Schiff reaction of collagen fibers with reference to periodate consumption by collagen and by insulin. J Histochem Cytochem. 1954;2:62–76.

    Article  PubMed  CAS  Google Scholar 

  24. Senou M, Khalifa C, Thimmesch M, Jouret F, Devuyst O, Col V, et al. A coherent organization of differentiation proteins is required to maintain an appropriate thyroid function in the pendred thyroid. J Clin Endocrin Metab. 2010;95:4021–30.

    Article  CAS  Google Scholar 

  25. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 C. Endocrinology. 1999;140:462–71.

    Article  PubMed  CAS  Google Scholar 

  26. Hernandez-Fonseca H, Bosch P, Sirisathien S, Wininger JD, Massey JB, Brackett BG. Effect of site of transplantation on follicular development of human ovarian tissue transplanted into intact or castrated immunodeficient mice. Fertil Steril. 2004;81:888–92.

    Article  PubMed  Google Scholar 

  27. Maltaris T, Kaya H, Hoffmann I, Mueller A, Beckmann MW, Dittrich R. Comparison of xenografting in SCID mice and LIVE/DEAD assay as a predictor of the developmental potential of cryopreserved ovarian tissue. In vivo. 2006;20:11–6.

    PubMed  CAS  Google Scholar 

  28. Maltaris T, Koelbl H, Fischl F, Seufert R, Schmidt M, Kohl J, et al. Xenotransplantation of human ovarian tissue pieces in gonadotropin-stimulated SCID mice: the effect of ovariectomy. Anticancer Res. 2006;26:4171–6.

    PubMed  Google Scholar 

  29. Maltaris T, Beckmann MW, Mueller A, Hoffmann I, Kohl J, Dittrich R. Significant loss of primordial follicles after prolonged gonadotropin stimulation in xenografts of cryopreserved human ovarian tissue in severe combined immunodeficient mice. Fertil Steril. 2007;87:195–7.

    Article  PubMed  Google Scholar 

  30. Maltaris T, Beckmann MW, Binder H, Mueller A, Hoffmann I, Koelbl H, et al. The effect of a GnRH agonist on cryopreserved human ovarian grafts in severe combined immunodeficient mice. Reproduction. 2007;133:503–9.

    Article  PubMed  CAS  Google Scholar 

  31. Nottola SA, Camboni A, Van Langendonckt A, Demylle D, Macchiarelli G, Dolmans MM, et al. Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study. Fertil Steril. 2008;90:23–32.

    Article  PubMed  Google Scholar 

  32. Gook DA, Edgar DH, Stern C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum Reprod. 1999;14:2061–8.

    Article  PubMed  CAS  Google Scholar 

  33. Fabbri R, Pasquinelli G, Bracone G, Orrico C, Di Tommaso B, Venturoli S. Cryopreservation of human ovarian tissue. Cell Tissue Bank. 2006;7:123–33.

    Article  PubMed  Google Scholar 

  34. Camboni A, Martinez-Madrid B, Dolmans MM, Nottola S, Van Langendonckt A, Donnez J. Autotransplantation of frozen-thawed ovarian tissue in a young woman: ultrastructure and viability of grafted tissue. Fertil Steril. 2008;90:1215–8.

    Article  PubMed  Google Scholar 

  35. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freewing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.

    Article  PubMed  CAS  Google Scholar 

  36. Siebzehnrübl E, Kohl J, Dittrich R, Wildt L. Freezing of human ovarian tissue—not the oocytes but the granulosa is the problem. Mol Cell Endocrinol. 2000;169:109–11.

    Article  PubMed  Google Scholar 

  37. Eyden B, Radford J, Shalet SM, Thomas N, Brison DR, Lieberman BA. Ultrastructural preservation of ovarian cortical tissue cryopreserved in dimethylsulfoxide for subsequent transplantation into young female cancer patients. Ultrastruct Pathol. 2004;28:239–45.

    Article  PubMed  Google Scholar 

  38. Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol. 2005;37:1344–9.

    Article  PubMed  CAS  Google Scholar 

  39. Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, et al. Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod. 2006;75:734–40.

    Article  PubMed  CAS  Google Scholar 

  40. Parrott JA, Skinner MK. Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology. 1997;138:3819–27.

    Article  PubMed  CAS  Google Scholar 

  41. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mira Hryniuk for reviewing the English language of the manuscript, Maria-Dolores Gonzalez, Department of Gynecology, for the double-blind study, and Céline Bugli (SMCS—IMMAQ—UCL) for statistical advice.

Funding

The present study was supported by grants from the Commissariat General aux Relations Internationales (UCL) awarded to Anu David, the Fonds National de la Recherche Scientifique de Belgique (grant Télévie N07.4507.10, grant 3.4.590.08 awarded to Marie-Madeleine Dolmans), the Fonds Spéciaux de Recherche, the Fondation St Luc, the Région Wallonne (grant WBI 2009–2010 awarded to Alessandra Camboni) and the Foundation Against Cancer, and donations from Mr Pietro Ferrero, Baron Frère and Viscount Philippe de Spoelberch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Donnez.

Additional information

C A Amorim and A David are joint first authors

Capsule

The theca layer in antral follicles from cryopreserved grafted human ovarian tissue is thinner than in fresh grafts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amorim, C.A., David, A., Dolmans, MM. et al. Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. J Assist Reprod Genet 28, 1157–1165 (2011). https://doi.org/10.1007/s10815-011-9672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9672-z

Keywords

Navigation