Skip to main content
Log in

Dicer is a key player in oocyte maturation

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

Apply Dicer siRNA to study functions of Dicer and miRNA during oogenesis.

Materials and Methods

Mouse oocytes were injected with Dicer siRNA and negative control siRNA and then matured in vitro. After IVM, oocytes were examined for maturation rates, spindle and chromosomal organization, and various gene expressions.

Results

Dicer siRNA significantly reduced maturation rates, increased abnormal spindle and chromosomal organization, and reduced the transcripts of Dicer miRNAs, spindle formation proteins (plk1 and AURKA) and spindle check points (Bub1, Bublb). Depletion of bulb16 markedly prohibited the first polar body extrusion and increased the incidence of misaligned chromosomes and abnormal meiotic spindle assembly.

Conclusion

Dicer siRNA triggered a cascade reduction for gene expressions starting from Dicer to miRNAs than to spindle assembly proteins and checkpoints which led to abnormal spindle and chromosomal organization. Thus, Dicer and miRNA appeared to play an important role during oogenesis and were essential for meiotic completion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambros B. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  3. Lai EC. MicroRNAs: runts of the genome assert themselves. Curr Biol. 2003;13:R925–36.

    Article  PubMed  CAS  Google Scholar 

  4. He L, Hannon GJ. MicroRNAs: Small RNAS with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  PubMed  CAS  Google Scholar 

  5. Lee Y, Ahn C, Han J, Cho H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO. 2002;21:4663–70.

    Article  CAS  Google Scholar 

  7. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.

    Article  PubMed  CAS  Google Scholar 

  8. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    Article  PubMed  CAS  Google Scholar 

  9. Bartel DP. MicroRNAs: fenomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  10. Bagga S, Bracht J, Hunger S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122:553–63.

    Article  PubMed  CAS  Google Scholar 

  11. Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M. RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA. 2002;99 Suppl 4:16499–506.

    Article  PubMed  CAS  Google Scholar 

  12. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194–201.

    Article  PubMed  CAS  Google Scholar 

  13. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. Elegans, required for transposon silencing and RNA interference is a homolog of Werner syndrome helicase and RnaseD. Cell. 1999;99:133–41.

    Article  PubMed  CAS  Google Scholar 

  14. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, et al. The rde-1 gene, RNA interference and transposon silencing in C. Elegans. Cell. 1999;99:123–32.

    Article  PubMed  CAS  Google Scholar 

  15. Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000;127(19):4147–56.

    PubMed  CAS  Google Scholar 

  16. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAS mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  PubMed  CAS  Google Scholar 

  17. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAS. Genes Dev. 2001;15:188–200.

    Article  PubMed  CAS  Google Scholar 

  18. Hannon GJ. RNA interference. Nature. 2002;418:244–51.

    Article  PubMed  CAS  Google Scholar 

  19. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005;65(15):6719–25.

    Article  PubMed  CAS  Google Scholar 

  20. Wianny F, Zernicka-Goetz MS. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000;2(2):70–5.

    Article  PubMed  CAS  Google Scholar 

  21. Nganvongpanit K, Müller H, Rings F, Hoelker M, Jennen D, Tholen E, et al. Selective degradation of maternal and embryonic transcripts in in vitro produced bovine oocytes and embryos using sequence specific double-stranded RNA. Reproduction. 2006;131(5):861–74.

    Article  PubMed  CAS  Google Scholar 

  22. Cabot RA, Prather RS. Cleavage stage porcine embryos may have differing developmental requirements for karyopherins alpha2 and alpha3. Mol Reprod Dev. 2003;64(3):292–301.

    Article  PubMed  CAS  Google Scholar 

  23. Li M, Li S, Yuan J, Wang ZB, Sun SC, Schatten H, et al. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS One. 2009;4(11):e7701.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8(10):1114–23. Epub 2006 Sep 17.

    Article  PubMed  CAS  Google Scholar 

  25. Schindler K, Schultz RM. CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. Biol Reprod. 2009;80(4):795–803. Epub 2009 Jan 7.

    Article  PubMed  CAS  Google Scholar 

  26. Svoboda P. RNA silencing in mammalian oocytes and early embryos. Curr Top Microbiol Immunol. 2008;320:225–56. Review.

    Article  PubMed  CAS  Google Scholar 

  27. Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8:87–96.

    Article  PubMed  CAS  Google Scholar 

  28. Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol. 2002;53:171–80.

    Article  PubMed  CAS  Google Scholar 

  29. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005;280:9330–5.

    Article  PubMed  CAS  Google Scholar 

  30. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7.

    Article  PubMed  CAS  Google Scholar 

  31. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293:2269–71.

    Article  PubMed  CAS  Google Scholar 

  32. Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002;12:1484–5.

    Article  PubMed  CAS  Google Scholar 

  33. Wienholds E, Koudijs MJ, Van Eeden FJ, Cuppen E, Plasterk RH. The microRNA-producing enzyme Dicer1 is essential for mouse development. Nature Genet. 2003;35:215–7.

    Article  CAS  Google Scholar 

  34. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nature Genet. 2003;35:215–7.

    Article  PubMed  CAS  Google Scholar 

  35. Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–8.

    Article  PubMed  CAS  Google Scholar 

  36. Amanai M, Brahmajosyula M, Perry AC. A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod. 2006;75:877–84.

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, et al. Identification and characterization of two novel classes of small RNAS in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAS in testes. Genes Dev. 2006;20:1732–43.

    Article  PubMed  CAS  Google Scholar 

  38. Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000;127:4147–56.

    PubMed  CAS  Google Scholar 

  39. Murchison EP, Stein P, Xuan ZY, Pan H, Zhang MQ, Schultz RM, et al. Critical roles for dicer in the female germline. Genes Dev. 2007;21:682–93.

    Article  PubMed  CAS  Google Scholar 

  40. Jaffe LA, Norris RP, Freudzon M, Ratzan WJ, Mehlmann LM. Microinjection of follicle-enclosed mouse oocytes. Method Mol Biol. 2009;51:157–73.

    Article  CAS  Google Scholar 

  41. Fire A. RNA-triggered gene silencing. Trends Genet. 1999;15:358–63.

    Article  PubMed  CAS  Google Scholar 

  42. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000;2:70–5.

    Article  PubMed  CAS  Google Scholar 

  43. Grabarek JB, Plusa B, Glover DM, Zernicka-Goetz M. Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by electroporation. Genesis. 2002;32:269–76.

    Article  PubMed  CAS  Google Scholar 

  44. Paradis F, Vigneault C, Robert C, Sirard MA. RNA interference as a tool to study gene function in bovine oocytes. Mol Reprod Dev. 2005;70:111–21.

    Article  PubMed  CAS  Google Scholar 

  45. Siddall LS, Barcroft LC, Watson AJ. Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides. Mol Reprod Dev. 2002;63:413–21.

    Article  PubMed  CAS  Google Scholar 

  46. Murchison EP, Hannon GJ. MiRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004;16:223–9.

    Article  PubMed  CAS  Google Scholar 

  47. Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Eppig AJ, et al. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol. 2006;302:104–17.

    Article  PubMed  CAS  Google Scholar 

  48. Yin S, Wang Q, Liu JH, Ai JS, Liang CG, Hou Y, et al. Bub1 prevents chromosome misalignment and precocious anaphase during mouse oocyte meiosis. Cell Cycle. 2006;5(18):2130–7. Epub 2006 Sep 15.

    PubMed  CAS  Google Scholar 

  49. Homer H, Gui L, Carroll J. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science. 2009;326(5955):991–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Ching Liu.

Additional information

Capsule

Dicer and miRNAs are essential for spindle integrity and completion of meiosis I. They appear to play important roles during oogenesis and can serve as potential markers of oocyte quality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HC., Tang, Y., He, Z. et al. Dicer is a key player in oocyte maturation. J Assist Reprod Genet 27, 571–580 (2010). https://doi.org/10.1007/s10815-010-9456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9456-x

Keywords

Navigation