Skip to main content
Log in

Vitrification of human early cavitating and deflated expanded blastocysts: clinical outcome of 474 cycles

  • CRYOPRESERVATION
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The present study was undertaken to evaluate and compare the post thaw survival, implantation and pregnancy rates of vitrified human early cavitating blastocysts with deflated expanded blastocysts.

Material and methods

Supernumerary blastocysts were vitrified in 30% ethylene glycol-dimethyl sulphoxide based solution using cryoloop. Fully expanded blastocysts were deflated by gentle aspiration of the blastocoelic fluid using a micromanipulator until the cavity collapses prior to vitrification.

Results

Of the 576 vitrified blastocysts, 545 (94.61%) survived thawing in the early cavitating blastocyst group which was significantly higher than deflated expanded blastocyst group, in which only 370 survived thawing out of 459 (80.62%). However, no significant difference was observed in implantation and pregnancy rates between early cavitating and deflated expanded blastocyst groups.

Conclusions

Early cavitating blastocyst would be the ideal stage for cryopreservation of human blastocysts as it has higher survival rate and avoids additional invasive procedures like deflation of the blastocoele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Menezo Y. Blastocyst freezing. Eur J Obstet Gynecol Reprod Biol. 2004;1:12–5.

    Article  Google Scholar 

  2. Gardner DK, Vella P, Lane M, Wagley L, Schlenkar T, Scoolcraft WB. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril. 1998;69:84–8.

    Article  CAS  PubMed  Google Scholar 

  3. Yoon HG, Yoon SH, Son WY, Kim JG, Im KS, Lim JH. Alternative embryo transfer on day 3 or day 5 for reducing the risk of multiple gestations. J Assist Reprod Genet. 2001;18(5):262–7.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf. 1985;2(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  5. Ménézo Y, Nicollet B, Herbaut N, André D. Freezing co cultured human blastocysts. Fertil Steril. 1992;58(5):977–80.

    PubMed  Google Scholar 

  6. Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod. 1996;54(5):1059–69.

    Article  CAS  PubMed  Google Scholar 

  7. Vanderzwalmen P, Zech H, Prapas Y, Nijs M, Vandamme B, Segal-Bertin G, et al. Pregnancy and implantation rates after transfers of fresh and vitrified embryos on day 4 or 5. J Assist Reprod Genet. 1999;16:147.

    Google Scholar 

  8. Yokota Y, Yokota H, Yokota M, Sato S, Araki Y. Birth of a healthy baby following vitrification of human blastocysts. Fertil Steril. 2001;75:1027–9.

    Article  CAS  PubMed  Google Scholar 

  9. Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K. Successful birth after transfer of vitrified human blastocysts with use of a cryoloop containerless technique. Fertil Steril. 2001;76(3):618–20.

    Article  CAS  PubMed  Google Scholar 

  10. Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH. Successful birth after transfer of blastocysts derived from oocytes of unstimulated woman with regular menstrual cycle after IVM approach. J Assist Reprod Genet. 2002;19(11):541–3.

    Article  PubMed  Google Scholar 

  11. Kuwayama M, Vajta G, Ieda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online. 2005;11(5):608–14.

    PubMed  Google Scholar 

  12. Veeck LL. Does the developmental stage at freezing impact on clinical results post thaw. Reprod Biomed Online. 2003;6(3):367–74.

    PubMed  Google Scholar 

  13. Anderson AR, Weikert LM, Crain JL. Determining the most optimal stage for embryo cryopreservation. Reprod Biomed Online. 2003;8(2):207–11.

    Article  Google Scholar 

  14. Feil D, Henshaw RC, Lane M. Day 4 embryo selection is equal to Day 5 using a new embryo scoring system validated in single embryo transfers. Hum Reprod. 2008;23(7):1505–10.

    Article  PubMed  Google Scholar 

  15. Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: Infertility and genetics beyond pp. Carnforth: Parthenon; 1988. p. 378–88.

    Google Scholar 

  16. Mukaida T, Nakamura S, Tomiyama T, Wada S, Oka C, Kasai M, et al. Vitrification of human blastocysts using cryoloops: clinical outcome of 223 cycles. Hum Reprod. 2003;18(2):384–91.

    Article  CAS  PubMed  Google Scholar 

  17. Massip A, Vanderzwalmen P, Leory F. Effect of stage of development on survival of mouse embryos frozen thawed rapidly. Cryobiology. 1984;21:574–7.

    Article  CAS  PubMed  Google Scholar 

  18. Slade NP, Takeda T, Squires EL, Elsden RP, Seidel GE. A new procedure for the cryopreservation of equine embryos. Theriogenology. 1985;24(1):45–58.

    Article  CAS  PubMed  Google Scholar 

  19. Hochi S, Ogasawara M, Braun J, Oguri N. Influence of relative embryonic volumes during glycerol equilibration on the survival of frozen-thawed equine blastocysts. J Reprod Dev. 1994a;40:243–9.

    Article  Google Scholar 

  20. Hochi S, Ogasawara M, Braun J, Oguri N. Pregnancies following transfer of equine embryos cryopreserved by vitrification. Theriogenology. 1994b;42:483–8.

    Article  CAS  Google Scholar 

  21. Zhou G-B, Zhu S-E, Hou Y-P, Jin F, Yang Q-E, Quan G-B, et al. Vitrification of mouse embryos at various stages by open-pulled straw (OPS) method. Anim Biotechnol. 2005;16:153–63.

    Article  CAS  PubMed  Google Scholar 

  22. Vanderzwalmen P, Gaurois B, Ectors FJ, Massip A, Ectors F. Some factors affecting successful vitrification of mouse blastocysts. Theriogenology. 1988;30:1177–83.

    Article  CAS  Google Scholar 

  23. Valdez C, Albas-Mazni O, Takahashi Y, Hishinuma M, Kanagawa H. Effects of equilibration time, precooling, and developmental stage on the survival of mouse embryos cryopreserved by vitrification. Theriogenology. 1990;33:627–36.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu S, Kasai H, Otoge T, Sakurai T, Machida T. Cryopreservation of expanded mouse blastocysts by vitrification in ethylene glycol based solution. J Reprod Fertil. 1993;98:139–45.

    Article  CAS  PubMed  Google Scholar 

  25. Mazur P, Rigopoulos N, Jakowski SC, Leibio SP. Preliminary estimates of the permeability of mouse ova and embryos to glycerol. Biophysicol Journal. 1976;16:232a.

    Google Scholar 

  26. Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, et al. Water transport across mammalian cell membranes. Am J Physiol. 1996;270:C12–30.

    CAS  PubMed  Google Scholar 

  27. Tachikawa S, Otoi T, Kondo S, Machida T, Kasai M. Successful vitrification of bovine blastocysts, derived by in vitro maturation and fertilization. Mol Reprod Dev. 1993;34:266–71.

    Article  CAS  PubMed  Google Scholar 

  28. Menezo Y. Cryopreservation of IVF embryos: which stage? Eur J of Obs & Gyn. 2004;113S:S28–32.

    Article  Google Scholar 

  29. Van Den Abbeel E, Van Steirteghem A. Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in-vitro viability. Hum Reprod. 2000;15(2):373–8.

    Article  Google Scholar 

  30. Edgar DH, Bourne H, Speirs AL, McBain JC. A quantitative analysis of the impact of cryopreservation on the implantation potential of human early cleavage stage embryos. Hum Reprod. 2000;15(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  31. Vanderzwalmen P, Bertin G, Debauche Ch, Standaert V, van Roosendaal E, Vandervorst M, et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod. 2002;17(3):744–51.

    Article  PubMed  Google Scholar 

  32. Chen SU, Lee TH, Lien YR, Tsai YY, Chang LJ, Yang YS. Microsuction of blastocoelic fluid before vitrification increased survival and pregnancy of mouse expanded blastocysts, but pretreatment with cytoskeletal stabilizer did not increase blastocyst survival. Fertil Steril. 2005;84:1156–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Rama Raju.

Additional information

Capsule

Survival during freeze thaw is stage specific and early cavitating blastocyst is the ideal stage for vitrification.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, G.A.R., Prakash, G.J., Krishna, K.M. et al. Vitrification of human early cavitating and deflated expanded blastocysts: clinical outcome of 474 cycles. J Assist Reprod Genet 26, 523–529 (2009). https://doi.org/10.1007/s10815-009-9356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9356-0

Keywords

Navigation