Skip to main content
Log in

Quantitative decision-making in preimplantation genetic (aneuploidy) screening (PGS)

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To analyze using hypergeometric probability statistics the impact of performing preimplantation genetic screening (PGS) on a cohort of day 3 cleavage stage embryos.

Methods

Statistical mathematical modeling.

Results

We find the benefit of performing PGS is highly dependent on the number of day 3 embryos available for biopsy. Additional hidden variables that determine the outcome of PGS are the rates of aneuploidy and mosaicism, and the probability of a chromosomally mosaic embryo to test “normal”. If PGS is performed, our analysis shows that many combinations of the number of biopsiable embryos, and the rates of aneuploidy and mosaicism results in a marginal benefit from the intervention. Other combinations are detrimental if PGS is actually undertaken. Finally, increases in PGS error rates lead to a rapid loss in the ability of PGS to provide useful discriminatory information.

Conclusion

We set out the statistical framework to determine the limits of PGS when a specific number of day 3 preimplantation embryos are available for biopsy. In general, PGS cannot be recommended a priori for a specific clinical situation due to the statistical uncertainties associated with the different hidden variable quantitative parameters considered important to the clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munné S, Grifo J, Cohen J, Weier H. Chromosome abnormalities in human arrested preimplantation embryos: a multiple probe FISH study. Am J Hum Genet. 1994;55:150–9.

    PubMed  Google Scholar 

  2. Munné S, Daily T, Sultan KM, Cohen J. The use of fist polar bodies for preimplantation diagnosis of aneuploidy. Mol Hum Reprod. 1995;10:1014–20.

    Google Scholar 

  3. Munné S, Marquez C, Reing A, Garrisi J, Alikani M. Chromosome abnormalities in embryos obtained after conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 1998;69:904–8.

    Article  PubMed  Google Scholar 

  4. Munné S, Magli C, Bahce M, Fung J, Legator M, Morrison L, et al. Preimplantation diagnosis of the aneuploidies most commonly found in spontaneous abortions and live births: XY, 13, 14, 15, 16, 18, 21, 22. Prenat Diagn. 1998;18:1459–66.

    Article  PubMed  Google Scholar 

  5. Harper JC, Dawson K, Delhanty JDA, Winston RML. The use of fluorescent in-situ hybridization (FISH) for analysis of in-vitro fertilization embryos: a diagnostic tool for the infertile couple. Hum Reprod. 1995;10:3255–8.

    CAS  PubMed  Google Scholar 

  6. Magli MC, Gianaroli L, Ferraretti AP. Chromosomal abnormalities in embryos. Mol Cell Endocrinol. 2001;183:S29–34.

    Article  CAS  PubMed  Google Scholar 

  7. Abdelhadi I, Colls P, Sandalinas M, Escudero T, Munné S. Preimplantation genetic diagnosis of numerical abnormalities for 13 chromosomes. Repro Biomed Online. 2003;6:226–31.

    Google Scholar 

  8. Fritz MA. Perspectives on the efficacy and indications for preimplantation screening: where are we now? Hum Reprod. 2008;23:2617–21.

    Article  PubMed  Google Scholar 

  9. Munné S, Lee A, Rozenwaks Z, Grifo J, Cohen J. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8:2185–91.

    PubMed  Google Scholar 

  10. Munné M, Magli C, Cohen J, Morton P, Sadowy S, Gianaroli L, et al. Positive outcome after preimplantation diagnosis of aneuploidy in human embryos. Hum Reprod. 1999;14:2191–9.

    Article  PubMed  Google Scholar 

  11. Munné S, Mireia S, Escudero T, Velilla E, Walmsley R, Sadowy S, et al. Improved implantation after preimplantation genetic diagnosis of anueploidy. Repro Biomed Online. 2003;7:91–7.

    Google Scholar 

  12. Gianaroli L, Magli C, Ferraretti AP, Munné S. Preimplantation diagnosis for aneuploidies in patients undergoing in vitro fertilization with a poor prognosis: identification of the categories for which it should be proposed. Fertil Steril. 1999;72:837–44.

    Article  CAS  PubMed  Google Scholar 

  13. Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod. 2004;19:2849–58.

    Article  PubMed  Google Scholar 

  14. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, et al. In vitro fertilization with preimplantation screening. N Engl J Med. 2007;357:9–17.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen J, Munné S. Two-cell biopsy and PGD outcome. Hum. Reprod. 2005;20:2363–4.

    Article  PubMed  Google Scholar 

  16. Wilton LJ. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:1770.

    CAS  PubMed  Google Scholar 

  17. Handyside A, Thornhill AR. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:1770.

    CAS  PubMed  Google Scholar 

  18. Cohen J, Wells D, Munné S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril. 2007;87:496–503.

    Article  PubMed  Google Scholar 

  19. Munné S, Cohen J, Simpson JL. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:1769–70.

    Article  PubMed  Google Scholar 

  20. Munné S, Gianaroli L, Tur-Kaspa I, Magli C, Sandalinas M, Grifo J, et al. Substandard application of preimplantation genetic screening may interfere with its clinical success. Fertil Steril. 2007;88:781–4.

    Article  PubMed  Google Scholar 

  21. Munné S, Wells D, Cohen J. Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. Fertil Steril. 2009; Article in press.

  22. Simpson JL. What next for preimplantation genetic screening? Randomized clinical trial in assessing PGS: necessary but not sufficient. Hum Reprod. 2008;23:2179–81.

    Article  PubMed  Google Scholar 

  23. Hadarson T, Hanson C, Lundin K, Hillensjo T, Nilsson L, Stevic J, et al. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate. Hum Reprod. 2008;23:2806–12.

    Article  Google Scholar 

  24. Staessen C, Verpoest W, Donoso P, Haentjens P, Van der Elst J, Liebaers I, et al. Pre-implantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod. 2008;23:2818–25.

    Article  CAS  PubMed  Google Scholar 

  25. Jansen RPS, Bowman MC, de Boer KA, Leigh DA, Lieberman DB, McArthur SJ. What next for preimplantation genetic screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod. 2008;23:1476–8.

    Article  PubMed  Google Scholar 

  26. Mersereau JE, Pergament E, Xhang X, Milad MP. Preimplantation genetic screening to improve in vitro fertilization pregnancy rates: a prospective randomized controlled trial. Fertil Steril. 2008;90:1287–9.

    Article  PubMed  Google Scholar 

  27. Shahine LK, Cedars MI. Preimplantation genetic diagnosis does not increase pregnancy rates in patients at risk for aneuploidy. Fertil Steril. 2006;85:51–6.

    Article  PubMed  Google Scholar 

  28. Donoso P, Staessen C, Fauser BCLM, Devroey P. Current value of preimplantation genetic aneuploidy screening in IVF. Hum Reprod Update. 2007;13:15–25.

    Article  CAS  PubMed  Google Scholar 

  29. Gleicher N, Weghofer A, Barad D. Preimplantation genetic screening: “established” and ready for prime time? Fertil Steril. 2008;89:780–8.

    Article  PubMed  Google Scholar 

  30. Yakin K, Urman B. What next for preimplantation genetic screening? A clinician’s perspective. Hum Reprod. 2008;23:1686–90.

    Article  PubMed  Google Scholar 

  31. Goossens V, Harton G, Moutou PN, Traeger-Synodinos J, Sermon K, Harper JC. ESHRE PGD Consortium data collection VIII: cycles from January to December 2005 with pregnancy follow-up to October 2006. Hum Reprod. 2008;23:2629–45.

    Article  CAS  PubMed  Google Scholar 

  32. Harper JC, Sermon K, Geraedts J, Vesela K, Harton G, Thornhill A, et al. What next for preimplantation genetic screening? Hum Reprod. 2008;23:478–80.

    Article  PubMed  Google Scholar 

  33. Fauser BCJM. Preimplantation genetic screening: the end of an affair? Hum Reprod. 2008;23:2622–5.

    Article  PubMed  Google Scholar 

  34. Mastenbroek S, Scriven P, Twisk M, Vivelle S, Van der Veen F, Repping S. What next for preimplantation screening? More randomized controlled trials needed? Hum Reprod. 2008;23:2626–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hodges JL, Lehman EL. Basic concepts of probability and statistics. Philadelphia: Society for Industrial and Applied Mathematics; 2004. p. 173–7.

    Google Scholar 

  36. Alikani M, Calderon G, Tomkin G. Cleavage anomalies in early human embryos and survival after prolonged culture in vitro. Hum Reprod. 2000;15:2634–43.

    Article  CAS  PubMed  Google Scholar 

  37. Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg AS. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril. 2000;73:558–64.

    Article  CAS  PubMed  Google Scholar 

  38. Racowsky C, Combelles CMH, Nureddin A, Pan Y, Finn A, Miles L, et al. Day 3 and day 5 morphologic predictors of embryo viability. Repro Biomed Online. 2003;6:323–31.

    Google Scholar 

  39. Goossens V, De Ryke D, De Vos A, Staessen C, Michiels A, Verpoest W, et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23:481–92.

    Article  PubMed  Google Scholar 

  40. Debrock S, Melotte C, Spiessens C, Peeraer K, Vanneste E, Meeuwis L, et al. Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at last 35 years: a prospective randomized trial. Fertil Steril. 2009; Article in press.

  41. Schoolcraft WB, Katz-Jaffe MG, Stevens J, Rawlins M, Munné S. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009;92:157–62.

    Article  PubMed  Google Scholar 

  42. Miller KA, Li X, Lambrese K, Su J, Treff N, Scott RT. Blastocyst formation rates in chromosomally normal versus abnormal embryos as analyzed by 24 chromosome microarray-based aneuploidy screening (MPGD). Fertil Steril. 2008;90(suppl 1):S346.

    Article  Google Scholar 

  43. Papanikolaou EG, D’haeseleer E, Verheyen G, Van de Velde H, Camus M, Van Steirteghem A, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day of embryo culture. A randomized prospective study. Hum Reprod. 2005;20:3198–203.

    Article  PubMed  Google Scholar 

  44. Delhanty JDA. Mechanisms of aneuploidy induction in human oogenesis in early development. Cytogenet Genome Res. 2005;111:237–44.

    Article  CAS  PubMed  Google Scholar 

  45. Wells D, Delhanty JDA. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    Article  CAS  PubMed  Google Scholar 

  46. Voullaire L, Slater H, Williamson R, Wilton L. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet. 2000;106:210–7.

    Article  CAS  PubMed  Google Scholar 

  47. The Preimplantation Genetic Diagnosis International Society (PGDIS). Guidelines for good practice PGD: programme requirements and laboratory quality assurance. Repro Biomed Online. 2008;16:134–47.

    Article  Google Scholar 

  48. Los JF, Van Opstal D, van der Berg C. The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum Reprod Update. 2004;10:79–94.

    Article  PubMed  Google Scholar 

  49. Delhanty JDA, Handyside A. The origin of genetic defects in man and their detection in the preimplantation embryo. Hum Reprod Update. 1995;1:201–15.

    Article  CAS  PubMed  Google Scholar 

  50. Handyside A, Delhanty JDA. Preimplantation genetic diagnosis: strategies and surprises. Trends Genet. 1997;13:270–5.

    Article  CAS  PubMed  Google Scholar 

  51. Delhanty JDA, Harper JC, Ao A, Handyside A, Winston RML. Multi-colour FISH detects chromosomal mosaicism and chaotic division in normal pre-implantation embryos from fertile patients. Hum Genet. 1997;99:755–60.

    Article  CAS  PubMed  Google Scholar 

  52. Magli MC, Jones GM, Gras L, Gianaroli L, Korman I, Trounson AO. Chromosome mosaicism in day 3 embryos that develop to morphologically normal blastocysts in vitro. Hum Reprod. 2000;15:1781–6.

    Article  CAS  PubMed  Google Scholar 

  53. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type and relevance to embryo outcome. Hum Reprod. 2002;17:413–9.

    Article  PubMed  Google Scholar 

  54. Sandalinas M, Sadowy S, Alikani M, Calderon G, Cohen J, Munné S. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16:1954–8.

    Article  CAS  PubMed  Google Scholar 

  55. Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D. Comprehensive molecular analysis of the human blastocyst stage. Hum Reprod. 2008;23:2596–608.

    Article  CAS  PubMed  Google Scholar 

  56. Hernandez ER. What next for preimplantation genetic screening? Beyond aneuploidy. Hum Reprod. 2009;24:1538–41.

    Article  PubMed  Google Scholar 

  57. Huang A, Adusumalli J, Patel S, Liem J, Williams J, Pisarska MD. Prevalence of chromosomal mosaicism in pregnancies with infertility. Fertil Steril. 2009;91:2355–1260.

    Article  PubMed  Google Scholar 

  58. The Practice Committee of the Society for Assisted Reproductive Technology and the Practice Committee of the American Society for Reproductive Medicine. Preimplantation genetic testing: a practice committee opinion. Fertil Steril. 2007;88:1497–504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Summers.

Additional information

Capsule Hypergeometric statistical modeling is used to define the limits of preimplantation genetic screening.

Addendum

Addendum

In the “Methods” section we outlined the basic parameters used to calculate the benefits of PGS. We also considered the impact of aneuploidy rates on day 3 embryo transfers without performing PGS. A more mathematical treatment will be presented in a separate publication. Below, we present in more detail the impact of PGS using day 3 biopsied embryos. The discussion that follows considers the intervention of PGS and its impact on the probability of transferring fully diploid embryos.

The calculations in this addendum form the basis for the data summarized in Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9.

The loss rate (spontaneous abortion)

We define the spontaneous abortion rate σ, the rate at which chromosomally aneuploid embryos that survive to day five implant and cause a spontaneous miscarriage. (As most aneuploidies do not go to term, this is essentially equivalent to the implantation rate for aneuploid embryos.) In parallel to P N , we define P A the probability that exactly N A of the N embryos are truly aneuploid. We can then calculate the probability P SA to undergo a spontaneous miscarriage:

$$ {P_{SA}} = \sum\limits_{{n_a} = 1}^N {{P_A}\left( {\left. {{n_a}} \right|N,\alpha } \right)} \left( {\sum\limits_{i = 1}^{\min \left( {{t_3},{n_a}} \right)} {{P_H}\left( {\left. i \right|{n_a},N,\min \left( {{t_3},N} \right)} \right)\sum\limits_{j = 1}^i {{P_{ts}}\left( {i,j,{\rho_{uA}}} \right)\left( {1 - {{\left( {1 - \sigma } \right)}^j}} \right)} } } \right) $$
(7)

Depending on the purpose of the calculation, one in principle should be careful to properly correlate the spontaneous miscarriage and successful transfer cases.

We have not done so here.

Day 5 transfer, without PGS

Day five transfer without PGS differs from the day three case due to the fact that some actionable filtering (based on the differential between ρvA and ρvN) of normal and abnormal embryos can take place. Formally, when written out fully one will find that the indices on the sums are entwined in a slightly different way. We reiterate that the value α is the aneuploidy rate observed at day 3; due to the ρvAvN differential the aneuploidy rate is different on day five and must be calculated anew.

First we calculate the joint probability P NA (N N , N A , N,α,ρvAvN) that on day five there are exactly N N normal and N A aneuploid embryos. We find this by summing joint survival probabilities products P ts over all possible values of N N 3 and N A 3 consistent with N, N N , and N A :

$$ {P_{NA}}\left( {\left. {{N_N},{N_A}} \right|N,\alpha, {\rho_{vA}},{\rho_{vN}}} \right) = \sum\limits_{N_N^3 = {N_N}}^{N - {N_A}} {{P_N}\left( {N_N^3,N,\alpha } \right){P_{ts}}\left( {N_N^3,{N_N},{\rho_{vN}}} \right){P_{ts}}\left( {N - N_N^3,{N_A},{\rho_{vA}}} \right)} $$
(8)

Choosing now to transfer at most t 5f embryos, what is the probability P noPGS5 (N,α,ρvAvN, t 5f ) that at least T of them are normal? It is the probability to select at least T normal embryos from a set of N N normal and N A abnormal embryos, summed over all possible values of N N and N A weighted by their joint probabilities:

$$ {P_{noPGS - 5}}\left( {\left. {{N_{NX}} \geqslant T} \right|N,\alpha, {\rho_{vA}},{\rho_{vN}},{t_{5f}}} \right) = \sum\limits_{{N_N} = T}^N {\sum\limits_{{N_A} = 0}^{N - {N_N}} {{P_{NA}}\left( {\left. {{N_N},{N_A}} \right|N,\alpha, {\rho_{vA}},{\rho_{vN}}} \right)\sum\limits_{t = T}^{\min \left( {{N_N} + {N_A},{t_{5f}}} \right)} {{P_H}\left( {\left. t \right|{N_N},{N_N} + {N_A},\min \left( {{N_N} + {N_A},{t_{5f}}} \right)} \right)} } } $$
(9)

Loss rate (spontaneous abortion) day 5 without PGS

Again, the spontaneous abortion rate σ is defined as the rate at which chromosomally aneuploid embryos that survive to day five implant and cause a spontaneous abortion. The probability of a spontaneous miscarriage is given by summing over all possible values of N A and all possible values of the number of transferred aneuploid embryos:

$$ {P_{SA - 5f}}\left( {N,\alpha, {\rho_{vN}},{\rho_{vA}},{t_{5f}}} \right) = \sum\limits_{{N_A} = 1}^N {\sum\limits_{{N_{N = 0}}}^{N - {N_A}} {{P_{NA}}\left( {\left. {{N_N},{N_A}} \right|N,\alpha, {\rho_{vA}},{\rho_{vN}}} \right)\sum\limits_{{N_{AX}} = 1}^{\min \left( {{N_A},{t_{5f}}} \right)} {{P_H}\left( {\left. {{N_{AX}}} \right|{N_A},{N_N} + {N_A},\min \left( {{t_{5f}},{N_N} + {N_A}} \right)} \right)\left( {1 - {{\left( {1 - \sigma } \right)}^{{N_{AX}}}}} \right)} } } $$
(10)

Day 3 PGS

The probability PnoPGS5(N N,X  ≥ T| T, N, α, ρvN = 0) just calculated must be compared to the probability P PGS that at least T normal embryos are transferred on day five following a day three PGS biopsy. In this case, the PGS analysis labels embryos as normal or aneuploid, but with some error rate due to the combined effects of laboratory uncertainties and embryonic mosaicism.

When undergoing PGS and transferring embryos on day 5 theoretically two separate effects favor successful transfer of normal embryos. The first, naturally, is the diagnostic information from PGS itself, separating normal from aneuploid embryos. The second is the filtering effect of culturing embryos from day 3 to day 5, as demonstrated in the previous section above. To preserve clarity in the strategy of calculation, we first go through the calculation of successful transfer in the case that all values of ρ are zero. We then introduce the complications of in vitro filtering in the following section, which are essentially the same as in the case discussed above in day 5 transfer without PGS.

Success probability, neglecting in vitro loss (mortality)

The strategy we take is to break the calculation into the following pieces:

  • The probability to find a particular number of \( N_N^N \)and \( N_N^A \)

  • For each set of \( N_N^N \)and \( N_N^A \), the probability to select at least T of the truly normal (out of \( N_N^N \)) to transfer

The probability P truth that the N embryos contain exactly N N truly normal embryos is:

$$ {P_{truth}} = \left( {\left. {{N_N}} \right|N,\alpha } \right) = \left( {\begin{array}{*{20}{c}} N \\ {{N_N}} \\ \end{array} } \right){\left( {1 - \alpha } \right)^{{N_N}}}{\alpha^{\left( {N - {N_N}} \right)}} $$
(11)

If there are N A (=N-N N ) truly aneuploid embryos, the probability P NA to observe \( N_A^N \) of them labeled as normal is:

$$ {P_{NA}}\left( {\left. {N_A^N} \right|{N_A},\mu, \eta } \right) = \left( {\begin{array}{*{20}{c}} {{N_A}} \\ {N_A^N} \\ \end{array} } \right){\left( {{\mu_A} + {\eta_A}} \right)^{N_A^N}}{\left( {1 - {\mu_A} - {\eta_A}} \right)^{\left( {{N_A} - N_A^N} \right)}} $$
(12)

Similarly, if there are N N truly normal embryos, the probability P NN to observe \( N_N^N \)of them labeled as normal is:

$$ {P_{NN}}\left( {\left. {N_N^N} \right|{N_N},\mu, \eta } \right) = \left( {\begin{array}{*{20}{c}} {{N_N}} \\ {N_N^N} \\ \end{array} } \right){\left( {{\mu_N} + {\eta_N}} \right)^{N_N^N}}{\left( {1 - {\mu_N} - {\eta_N}} \right)^{\left( {{N_N} - N_N^N} \right)}} $$
(13)

So we can write that the probability P label that the final normally-labeled sample consists of \( N_N^N \)truly normal embryos and\( N_A^N \) aneuploid embryos is:

$$ {P_{label}}\left( {\left. {N_N^N,N_A^N} \right|N,\alpha, \mu, \eta } \right) = \sum\limits_{n = 1}^N {{P_{truth}}\left( {\left. n \right|N,\alpha } \right){P_{NN}}\left( {\left. {N_N^N} \right|n,\mu, \eta } \right){P_{NA}}\left( {\left. {N_A^N} \right|N - n,\mu, \eta } \right)} $$
(14)

Once again, we must use the hypergeometric distribution to assign the probability

P X to select at least T truly normal embryos out of the collection of normally-labeled embryos:

$$ {P_X}\left( {\left. {{N_{X,N}} \geqslant T} \right|T,N_N^N,N_A^N} \right) = \sum\limits_{i = T}^{\min \left( {{t_{5p}},N_N^N + N_A^N} \right)} {{P_H}\left( {\left. i \right|N_N^N,N_N^N + N_A^N,\min \left( {{t_{5p}},N_N^N + N_A^N} \right)} \right)} $$
(15)

We now have all the expressions needed to evaluate the desired quantity P PGS :

$$ {P_{PGS}}\left( {\left. {{N_{X,N}} \geqslant T} \right|N,\alpha, \mu, \eta, \rho = 0} \right) = \sum\limits_{N_N^N = T}^N {\sum\limits_{N_A^N = 0}^{N - N_N^N} {{P_{label}}\left( {\left. {N_N^N,N_A^N} \right|N,\mu, \eta } \right){P_X}\left( {\left. {{N_{X,N}}} \right|N_N^N,N_A^N} \right)} } $$
(16)

Spontaneous miscarriage rate, neglecting in vitro loss (mortality), day 5 transfer with PGS

We may straightforwardly define the probability to select for transfer a number of aneuploid embryos P XA in parallel to P X . We then calculate the probability for a spontaneous abortion P SAPGS (ρ = 0) while undergoing PGS:

$$ {P_{SAPGS}}\left( {N,T,\sigma, \rho = 0} \right) = \sum\limits_{{n_a} = 1}^{\max \left( {{t_{5p}},N} \right)} {\sum\limits_{{n_n} = 0}^{\max \left( {{t_{5p}},N} \right) - {n_a}} {{P_{label}}\left( {{n_n},{n_a}} \right)\sum\limits_{n = 0}^{{n_a}} {{P_{XA}}\left( {n,T,{n_n},{n_a}} \right)\left( {1 - {{\left( {1 - \sigma } \right)}^n}} \right)} } } $$
(17)

Successful transfer probability accounting for in vitro loss (mortality), day 5 transfer with PGS

As in the earlier section, we must now consider all possible values of \( N_{N,5}^A \) and \( N_{N,5}^N \), the number of PGS-labeled "normal" embryos that are truly normal and aneuploid, respectively, surviving to day five. We find the probability P NA,5 (\( N_{N,5}^A \), \( N_{N,5}^N \)| N, N N , N A , α, ρ, μ,η) (where μ, ρ, and η are a notational shorthand for all relevant members of the parameter families with the various subscripts):

$$ {P_{NA,5}}\left( {\left. {N_{N,5}^A,N_{N,5}^N} \right|N,\alpha, \mu, \eta, \rho } \right) = \sum\limits_{N_N^A = N_{N,5}^A}^{N - N_{N,5}^N} {\sum\limits_{N_N^N = N_{N,5}^N}^{N - N_N^A} {{P_{label}}\left( {\left. {N_N^N,N_A^N} \right|N,\alpha, \mu, \eta } \right){P_{ts}}\left( {N_{N,5}^A,N_N^A,{\rho_{vA}}} \right){P_{ts}}\left( {N_{N,5}^N,N_N^N,{\rho_{vN}}} \right)} } $$
(18)

We now sum over values of the transferred number of truly normal embryos for the probability to transfer that number, to find:

$$ {P_{PGS}}\left( {\left. {{N_{X,N}} \geqslant T} \right|N,\alpha, \mu, \eta, \rho } \right) = \sum\limits_{N_{N,5}^N = T}^N {\sum\limits_{N_{A,5}^N = 0}^{N - N_{N,5}^N} {{P_{NA,5}}\left( {\left. {N_{N,5}^N,N_{A,5}^N} \right|N,\alpha, \mu, \eta, \rho } \right){P_X}\left( {\left. {{N_{X,N}}} \right|N_{N,5}^N,N_{A,5}^N} \right)} } $$
(19)

Miscarriage rate accounting for in vitro loss (mortality)

Now accounting properly for the loss rates (mortality) we find:

$$ \begin{array}{*{20}{c}} {{P_{SAPGS}}\left( {N,T,\sigma, \rho, \mu, \eta } \right) = \sum\limits_{{n_a} = 1}^{\min \left( {{t_{5p}},N} \right)} {\sum\limits_{{n_n} = 1}^{\min \left( {{t_{5p}},N} \right) - {n_a}} {{P_{label}}\left( {\left. {{n_n},{n_a}} \right|N,\alpha, \mu, \eta, \rho } \right) \times } } } \\ {\left[ {\sum\limits_{N_{A,3}^N = 1}^N {\sum\limits_{N_{N,3}^N = 1}^{N - N_{A,3}^N} {{P_{ts}}\left( {N_{A,3}^N,{n_a},{\rho_{vA}}} \right){P_{ts}}\left( {N_{N,3}^N,{n_n},{\rho_{vN}}} \right)} } \left( {\sum\limits_{n = 1}^{\min \left( {{n_a},{t_{5p}}} \right)} {{P_{XA}}\left( {\left. n \right|{n_a},{n_n} + {n_a},\min \left( {{n_a},{t_{5p}}} \right)} \right)\left[ {1 - {{\left( {1 - \sigma } \right)}^n}} \right]} } \right)} \right]} \\ \end{array} $$
(20)

where for clarity the internal summands N N and N A stand for \( N_{N,5}^N \)and \( N_{N,5}^A \), respectively.

ΔP and ΔC

Displaying now the full functional dependence, we have described the proper framework for calculating the increase in the probability of success:

$$ \Delta P = {P_{PGS}}\left( {{N_{X,N}} \geqslant T\left| {N,T,\alpha, {\mu_A},{\mu_N},{\eta_A},{\eta_N},{t_5},\rho } \right.} \right) - {P_{noPGS}}\left( {{N_{X,N}} \geqslant T\left| {N,T,\alpha, {t_3},\rho } \right.} \right) $$
(22)

We can also calculate the increase in the cost function accounting for embryo loss:

$$ \begin{gathered} \Delta C = \left[ {{P_{PGS}}\left( {{N_{X,N}} \geqslant T\left| {N,T,\alpha, {\mu_A},{\mu_N},{\eta_A},{\eta_N},{t_5},\rho } \right.} \right) - {P_{noPGS}}\left( {{N_{X,N}} \geqslant T\left| {N,T,\alpha, {t_3},\rho } \right.} \right)} \right] \hfill \\ - \lambda \left[ {{P_{SA - PGS}}\left( {\sigma, N,T,\alpha, {\mu_A},{\mu_N},{\eta_A},{\eta_N},{t_5},\rho } \right) - {P_{SA - noPGS}}\left( {\sigma, N,T,\alpha, {t_3},\rho } \right)} \right] \hfill \\ \end{gathered} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, M.C., Foland, A.D. Quantitative decision-making in preimplantation genetic (aneuploidy) screening (PGS). J Assist Reprod Genet 26, 487–502 (2009). https://doi.org/10.1007/s10815-009-9352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9352-4

Keywords

Navigation