Skip to main content
Log in

Effect of laser-assisted hatching and necrotic blastomere removal on the development of vitrified–warmed four-cell mouse embryos

  • Animal
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of laser-assisted hatching and necrotic blastomere removal on the development of vitrified–warmed mouse embryos.

Methods

The vitrified–warmed four-cell stage mouse embryos were divided into five groups; vitrified intact with no laser-assisted hatching, vitrified intact with laser-assisted hatching, vitrified damaged with neither laser assisted hatching nor necrotic blastomere removal, vitrified damaged with laser-assisted hatching, and vitrified damaged with necrotic blastomere removal. Thereafter blastocyst formation, blastomere and apoptotic cell number within all groups were statistically compared.

Results

The rate of blastocyst formation showed a significant improvement in the group vitrified intact with laser-assisted hatching. However, neither laser-assisted hatching nor necrotic blastomere removal can improve a delayed vitrified–warmed damaged embryos in term of blastocyst formation and total cell number. Nevertheless, apoptotic cell number was significantly reduced after application of both techniques.

Conclusions

Laser-assisted hatching can improve the development of vitrified–warmed intact four-cell stage mouse embryos, whereas necrotic blastomere removal has no significant effect on the development of vitrified–warmed four-cell stage damaged embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bafrani HH, Salsabil N, Pasbakhsh P, Hassani H, Movahedin M, Al-tarihi T, et al. Comparison of 1,2-propanediol and ethylene glycol for cryopreservation of slow-cooled mouse zygotes and their subsequent development. J Assist Reprod Genet 2003;20:234–40. doi:10.1023/A:1024159512353.

    Article  PubMed  Google Scholar 

  2. Shaw JM, Ward C, Trounson AO. Evaluation of propanediol, ethylene glycol, sucrose and antifreeze proteins on the survival of slow-cooled mouse pronuclear and 4-cell embryos. Hum Reprod 1995;10:396–402.

    PubMed  CAS  Google Scholar 

  3. Emiliani S, Van den Bergh M, Vannin AS, Biramane JE. Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes, 4-cell embryos and blastocysts. Hum Reprod 2000;15(4):905–10. doi:10.1093/humrep/15.4.905.

    Article  PubMed  CAS  Google Scholar 

  4. Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 1998;13:2874–9.

    PubMed  CAS  Google Scholar 

  5. Uechi H, Tsutsumi O, Morita Y, Takai Y, Taketani Y. Comparison of the effects of controlled-rate cryopreservation and vitrification on 2-cell mouse embryos and their subsequent development. Hum Reprod 1999;14(11):2827–32. doi:10.1093/humrep/14.11.2827.

    Article  PubMed  CAS  Google Scholar 

  6. Check JH, Hoower L, Nazari A, O’Shaughnessy A, Summers D. The effect of assisted hatching on pregnancy rates after frozen embryo transfer. Fertil Steril 1996;65:254–7.

    PubMed  CAS  Google Scholar 

  7. Kasai M, Zhu SN, Pedro PB, Nakamura K, Sakurai T, Edashige K. Fracture damage of embryos and its prevention during vitrification and warming. Cryobiology 1996;33:459–64. doi:10.1006/cryo.1996.0046.

    Article  PubMed  CAS  Google Scholar 

  8. Tucker MJ, Cohen J, Massey JB, Mayer MP, Wiker SR, Wright G. Partial dissection of the zona pellucida of frozen–thawed human embryos may enhance blastocyst hatching, implantation, and pregnancy rates. Am J Obstet Gynecol 1991;165:341–5.

    PubMed  CAS  Google Scholar 

  9. Rulicke T, Autenried P. Potential of two-cell mouse embryos to develop to term despite partial damage after cryopreservation. Int J Lab Anim Sci 1995;29:320–6. doi:10.1258/002367795781088252.

    Article  CAS  Google Scholar 

  10. Van den Abbeel E, Camus M, Van Waesberghe L, Devroey P, Van Steirteghem AC. Viability of partially damaged human embryos after cryopreservation. Hum Reprod 1997;12:2006–10. doi:10.1093/humrep/12.9.2006.

    Article  PubMed  Google Scholar 

  11. Van den Abbeel E, Van Steirteghem A. Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in-vitro viability. Hum Reprod 2000;115:373–8. doi:10.1093/humrep/15.2.373.

    Article  Google Scholar 

  12. Mukaida T, Takahashi K, Kasai M. Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique. Reprod Biomed 2002;2:221–5.

    Google Scholar 

  13. Kasai M. Cryopreservation of mammalian embryos. Mol Biotechnol 1997;7(2):173–9. doi:10.1007/BF02761753.

    Article  PubMed  CAS  Google Scholar 

  14. Rienzi L, Nagy ZP, Ubaldi F. Laser-assisted removal of necrotic blastomers frome cryopreserved embryos that were partially damaged. Fertil Steril 2002;77:145–51. doi:10.1016/S0015-0282(02)03109-6.

    Article  Google Scholar 

  15. Chen SU, lien YR, Cheng YY, Chen HF, Ho HN, Yang YS. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 2001;16:2350–6. doi:10.1093/humrep/16.8.1778.

    Article  PubMed  CAS  Google Scholar 

  16. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophoectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online 2001;3(1):25–9.

    Article  PubMed  Google Scholar 

  17. Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biol Reprod 1998;59(1):136–44. doi:10.1095/biolreprod59.1.136.

    Article  PubMed  CAS  Google Scholar 

  18. Ashwood-simith M, Morris G, Fowler R, Appleton TC, Ashorn R. Physical factors are involved in the destruction of embryos and oocytes during freezing and thawing. Hum Reprod 1988;3:795–802.

    Google Scholar 

  19. Rall W, Reid D, Polge C. Analysis of slow-warming injury of mouse embryos by cryomicroscopecial and physiochemical methods. Cryobiology 1984;21:106–21. doi:10.1016/0011-2240(84)90027-0.

    Article  PubMed  CAS  Google Scholar 

  20. Tao J, Tamis R. Application of assisted hatching for 2 day old, frozen–thawed embryo transfer in poor prognosis population. J Assist Reprod Genet 1997;14:128–30. doi:10.1007/BF02765783.

    Article  PubMed  CAS  Google Scholar 

  21. Gabrielsen A, Agerholm I, Toft B, Hald F, Petersen K, Aagaard J, et al. Assisted hatching improves implantation rates on cryopreserved–thawed embryos. A randomized prospective study. Hum Reprod 2004;19:2258–62. doi:10.1093/humrep/deh434.

    Article  PubMed  CAS  Google Scholar 

  22. Balaban B, Urma B, Yakin K, Isiklar A. Laser-assisted hatching increases pregnancy and implantation rates in cryopreserved embryos that were allowed to cleave in vitro after thawing: a prospective randomized study. Hum Reprod 2006;21:2136–40. doi:10.1093/humrep/del097.

    Article  PubMed  Google Scholar 

  23. Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Ashtiani SK. Effect of laser zona pellucida opening on clinical outcome of assisted reproduction technology in patients with advanced female age, recurrent implantation failure, or frozen–thawed embryos. Fertil Steril 2007 Sep 21 [Epub ahead of print].

  24. Sifer C, Sellam A, Poncelet C, Kulski P, Martin-Pont B, Bottero J, et al. A prospective randomized study to assess the benefit of partial zona pellucida digestion before frozen–thawed embryo transfers. Hum Reprod 2006;21:2384–9. doi:10.1093/humrep/del149.

    Article  PubMed  CAS  Google Scholar 

  25. Ng EH, Naveed F, Lau EY, Yeung WS, Chan CG, Tang OS, et al. A randomized double blind controlled study of the efficacy of laser assisted hatching on implantation and pregnancy rates of frozen–thawed embryo transfer at the cleavage stage. Hum Reprod 2005;20:979–85. doi:10.1093/humrep/deh724.

    Article  PubMed  Google Scholar 

  26. Matson PL, Graefling J, Junk SM, Yovich JL, Edirisinghe WR. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in vitro fertilization programme. Hum Reprod 1997;12:1550–15534. doi:10.1093/humrep/12.7.1550.

    Article  PubMed  CAS  Google Scholar 

  27. Freean L, Trounson A, Kirby C. Cryopreservation of human embryos: process on the clinical use of the technique in human in vitro fertilization. J Assist Reprod Genet 1986;3:53–61. doi:10.1007/BF01131381.

    Article  Google Scholar 

  28. Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of cryopreservation with the use of 1,2-propanediol. Fertil Steril 1985;44:645–51.

    PubMed  CAS  Google Scholar 

  29. Hartshorne GM, Wick K, Elder K, Dyson H. Effect of cell number at freezing upon survival and viability of cleaving embryos generated from stimulated IVF cycles. Hum Reprod 1990;7:857–61.

    Google Scholar 

  30. Alikani M, Olivennes F, Cohen J. Microsurgical correction of partially degenerate mouse embryos promotes hatching and restores their viability. Hum Reprod 1993;8:1723–8.

    PubMed  CAS  Google Scholar 

  31. Liu WX, Zheng Y, Luo MJ, Huang P, Yue LM, Wang L, et al. Effects of removal of necrotic blastomeres from mouse cryopreserved embryos on blastocyst formation and hatching. Theriogenology 2005;64(5):1114–20. doi:10.1016/j.theriogenology.2005.01.007.

    Article  PubMed  Google Scholar 

  32. Rienzi L, Ubaldi F, Lacobelli M. Developmental potential of fully intact and partially damaged cryopreserved embryos after laser-assisted removal of necrotic blastomers and post-thaw culture selection. Fertil Steril 2005;84(4):888–94. doi:10.1016/j.fertnstert.2005.04.038.

    Article  PubMed  Google Scholar 

  33. Elliott TA, Colturato LF, Taylor TH, Wright G, Kort HI, Nagy ZP. Lysed cell removal promotes frozen–thawed embryo development. Fertil Steril 2007;87(6):1444–9. doi:10.1016/j.fertnstert.2006.11.064.

    Article  PubMed  Google Scholar 

  34. Nagy Z, Taylor T, Elliott T, Massey J, Kort H, Shapiro D. Removal of lysed blastomeres from frozen–thawed embryos improves implantation and pregnancy rates in frozen embryo transfer cycles. Fertil Steril 2005;6(84):1605–12.

    Google Scholar 

  35. Chi HJ, Koo JJ, Kim MY, Joo JY, Chang SS, Chung KS. Cryopreservation of human embryos using ethylene glycol in controlled slow freezing. Hum Reprod 2002;17(8):2146–51. doi:10.1093/humrep/17.8.2146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Rezazadeh Valojerdi.

Additional information

Capsule Laser-assisted hatching can improve the development of vitrified–warmed intact mouse embryos. Similar to necrotic blastomere removal, it has no significant effect on the development of vitrified–warmed damaged embryos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, R., Valojerdi, M.R. & Eftekhari-Yazdi, P. Effect of laser-assisted hatching and necrotic blastomere removal on the development of vitrified–warmed four-cell mouse embryos. J Assist Reprod Genet 25, 333–339 (2008). https://doi.org/10.1007/s10815-008-9238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9238-x

Keywords

Navigation