Skip to main content
Log in

Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns

  • Physiology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Identification of the unique genes playing critical roles in human embryo cleavage.

Methods

Isolation of human ePAB cDNA using human ovary cDNA libraries and mouse ePAB amino acid sequences, followed by analysis of its expression pattern in various adult tissues and stages during early oocyte development excluding ePABP2.

Results

Human ePAB encodes a 330-aa protein and is located on chromosome 20q12-q13.1. The amino acid sequence is 72% homologous with that of mouse ePab. Human ePAB has only three RRMs and lacks a PABP domain; the expression pattern is nonspecific in adult tissues and detected in all stages, from oocyte to blastocyst. Human ePABP2 encodes a 282-aa protein and is located on chromosome 16q24.3. The amino acid sequence is 68% homologous with mouse ePabp2.

Conclusions

We identified human ePAB and ePABP2 cDNA. Human ePAB cDNA is not expressed specific to the ovary. Biological discrepancies exist between the human and the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Voorthis BJ. In vitro fertilization. N Engl J Med. 2007;356:379–86.

    Article  Google Scholar 

  2. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978;2:366.

    Article  PubMed  CAS  Google Scholar 

  3. Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006;354:1139–46.

    Article  PubMed  CAS  Google Scholar 

  4. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–5.

    Article  PubMed  CAS  Google Scholar 

  5. Cui SXS, Kim NH. Maternally derived transcripts: identification and characterisation during oocyte maturation and early cleravage. Reprod Fertil Dev. 2007;19:25–34.

    Article  PubMed  CAS  Google Scholar 

  6. Stebbins-Boaz B, Hake LE, Richter JD. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996;15:2582–92.

    PubMed  CAS  Google Scholar 

  7. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Reg2 regulates translation of c-mos mRNA. Nature 2000;404:302–7.

    Article  PubMed  CAS  Google Scholar 

  8. Gebauer F, Xu W, Cooper GM, Richter JD. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 1994;13:5712–20.

    PubMed  CAS  Google Scholar 

  9. Oh B, Hwang S, McLaughlin J, Solter D, Knowles BB. Timely translation during the mouse oocyte-to-embryo transition. Development 2000;127:3795–803.

    PubMed  CAS  Google Scholar 

  10. Croisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 2000;103:435–47.

    Article  Google Scholar 

  11. Uto K, Sagata N. Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 2000;19:1816–26.

    Article  PubMed  CAS  Google Scholar 

  12. Stutz A, Conne B, Huarte J, Gubler P, Volkel V, Flandin P, et al. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 1998;12:2535–48.

    Article  PubMed  CAS  Google Scholar 

  13. Richter JD, Lorenz LJ. Selective translation of mRNAs at synapses. Curr Opin Neurobiol. 2002;12:300–4.

    Article  PubMed  CAS  Google Scholar 

  14. Cao Q, Richter JD. Dissolution of the maskin-elF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 2002;21:3852–62.

    Article  PubMed  CAS  Google Scholar 

  15. Blobel G. A protein molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci USA. 1973;70:924–28.

    Article  PubMed  CAS  Google Scholar 

  16. Mangus DA, Evans MC Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the posttranscriptional control of gene expression. Genome Biol. 2003;4:223.

    Article  PubMed  Google Scholar 

  17. Kuhn U, Eahle E. Structure and function of poly(A) binding proteins. Biochim Biophys Acta. 2004;1678:67–84.

    PubMed  CAS  Google Scholar 

  18. Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 1991;66:759–68.

    Article  PubMed  CAS  Google Scholar 

  19. Wahle E, Lustig A, Jeno P, Maurer P. Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J Biol Chem. 1993;268:2937–45.

    PubMed  CAS  Google Scholar 

  20. Good PJ, Abler L, Herring D, Sheets MD. Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 2004;38:166–75.

    Article  PubMed  CAS  Google Scholar 

  21. Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15:774–88.

    Article  PubMed  CAS  Google Scholar 

  22. Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preomplantation embryos. Proc Natl Acad Sci USA. 2005;102:367–72.

    Article  PubMed  CAS  Google Scholar 

  23. Melo EO, Dhalia R, de Sa CM, Standart N, de Melo Neto OP. Identification of a C-terminal poly(A)-binding protein (PABP)–PABP interaction domain. J Biol Chem. 2003;278:46357–68.

    Article  PubMed  CAS  Google Scholar 

  24. Hamatani T, Ko MSh, Yamada M, Kuji N, Mizusawa Y, Shoji M, et al. Global gene expression profiling of preimplantation embryos. Hum Cell. 2006;19:98–117.

    Article  PubMed  Google Scholar 

  25. Cosson B, Braun F, Paillard L, Blackshear P, Osborne HB. Identification of a novel Xenopus laevis poly(A) binding protein. Biol Cell. 2004;96:519–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (No. 19591887) from the Ministries of Education, Culture, Sports, Science and Technology and Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Miyamoto.

Additional information

Capsule

We successfully isolated the human ePAB and ePABP2 cDNAs and analyzed the expression patterns in humans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakugawa, N., Miyamoto, T., Sato, H. et al. Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns. J Assist Reprod Genet 25, 215–221 (2008). https://doi.org/10.1007/s10815-008-9220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9220-7

Keywords

Navigation