Skip to main content
Log in

MicroRNA expression in preimplantation mouse embryos from Ped gene positive compared to Ped gene negative mice

  • Animal
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The mouse preimplantation embryo development (Ped) gene product, Qa-2, influences the rate of preimplantation embryonic development and overall reproductive success. Here we investigated the expression pattern of two microRNAs, miR-125a and miR-125b, known to be involved in development in lower organisms, in preimplantation embryos from the two-cell, four-cell, eight-cell, morula, and blastocyst stages of development from the congenic B6.K1 (Ped negative) and B6.K2 (Ped positive) strains of mice.

Method

B6.K1 and B6.K2 congenic mice differ only in the absence (B6.K1) or presence (B6.K2) of the genes encoding Qa-2 protein. We analyzed the expression of miR-125a and miR-125b in B6.K1 and B6.K2 preimplantation embryos by using real-time PCR.

Result

We found no variability in miR-125b expression at any developmental stage in both strains. However, miR-125a expression increased during development in both strains and was ten times higher in Ped negative (B6.K1) embryos than in Ped positive (B6.K2) embryos by the blastocyst stage of development.

Conclusion

Our results show that the absence of the Ped gene profoundly affects the level of a miRNA (miR-125a) known to regulate early development. The implication is that miR-125a is likely involved in the regulation of timing of early development in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21:4663–70.

    Article  PubMed  CAS  Google Scholar 

  2. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  4. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.

    Article  PubMed  CAS  Google Scholar 

  6. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208.

    Article  PubMed  CAS  Google Scholar 

  7. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  PubMed  CAS  Google Scholar 

  8. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001;293:1146–50.

    Article  PubMed  CAS  Google Scholar 

  9. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  PubMed  CAS  Google Scholar 

  10. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27:91–105.

    Article  PubMed  CAS  Google Scholar 

  11. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  PubMed  CAS  Google Scholar 

  12. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  PubMed  CAS  Google Scholar 

  13. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.

    Article  PubMed  CAS  Google Scholar 

  14. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev Biol. 2003;259:9–18.

    Article  PubMed  CAS  Google Scholar 

  15. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    Article  PubMed  CAS  Google Scholar 

  16. Warner CM, Brenner CA. Genetic regulation of preimplantation embryo survival. Curr Top Dev Biol. 2001;52:151–92.

    Article  PubMed  CAS  Google Scholar 

  17. Warner CM, Newmark JA, Comiskey M, De Fazio SR, O’Malley DM, Rajadhyaksha M, Townsend DJ, McKnight S, Roysam B, Dwyer PJ, DiMarzio CA. Genetics and imaging to assess oocyte and preimplantation embryo health. Reprod Fertil Dev. 2004;16:729–41.

    Article  PubMed  CAS  Google Scholar 

  18. Warner C. Immunological aspects of embryo development. In: Cohen J, Elder K, editors. Human embryo evaluation and selection. London: Parthenon Publishing Group; 2007. p. 155–68.

    Google Scholar 

  19. Warner CM, Gollnick SO, Goldbard SB. Linkage of the preimplantation-embryo-development (Ped) gene to the mouse major histocompatibility complex (MHC). Biol Reprod. 1987;36:606–10.

    Article  PubMed  CAS  Google Scholar 

  20. Verbanac K, Warner C. Role of the major histocompatibility complex in the timing of early mammalian development. In: Glasser S, Bullock D, editors. Cellular and molecular aspects of implantation. New York: Plenum; 1981. p. 467–70.

    Google Scholar 

  21. Warner CM, Brownell MS, Rothschild MF. Analysis of litter size and weight in mice differing in Ped gene phenotype and the Q region of the H-2 complex. J Reprod Immunol. 1991;19:303–13.

    Article  PubMed  CAS  Google Scholar 

  22. Soloski MJ, Hood L, Stroynowski I. Qa-region class I gene expression: identification of a second class I gene, Q9, encoding a Qa-2 polypeptide. Proc Natl Acad Sci U S A. 1988;85:3100–4.

    Article  PubMed  CAS  Google Scholar 

  23. Sherman D, Waneck G, Flavell R. Qa-2 antigen encoded by Q7b is biochemically indistinguishable from Qa-2 expressed on the surface of C57BL/10 mouse spleen cells. J Immunol. 1988;140(1):138–42.

    PubMed  CAS  Google Scholar 

  24. Elliott E, Rathbun D, Ramsingh A, Garberi J, Flaherty L. Genetics and expression of the Q6 and Q8 genes. An LTR-like sequence in the 3¢ untranslated region. Immunogenetics. 1989;29:371–9.

    Article  PubMed  CAS  Google Scholar 

  25. Cai W, Cao W, Wu L, Exley GE, Waneck GL, Karger BL, Warner CM. Sequence and transcription of Qa-2-encoding genes in mouse lymphocytes and blastocysts. Immunogenetics. 1996;45:97–107.

    Article  PubMed  CAS  Google Scholar 

  26. Xu Y, Jin P, Warner CM. Modulation of preimplantation embryonic development by antisense oligonucleotides to major histocompatibility complex genes. Biol Reprod. 1993;48:1042–6.

    Article  PubMed  CAS  Google Scholar 

  27. Wu L, Exley GE, Warner CM. Differential expression of Ped gene candidates in preimplantation mouse embryos. Biol Reprod. 1998;59:941–52.

    Article  PubMed  CAS  Google Scholar 

  28. Flaherty L. The Tla region of the mouse: identification of a new serologically defined locus, Qa-2. Immunogenetics. 1976;3:533–9.

    Article  Google Scholar 

  29. Xu Y, Jin P, Mellor AL, Warner CM. Identification of the Ped gene at the molecular level: the Q9 MHC class I transgene converts the Ped slow to the Ped fast phenotype. Biol Reprod. 1994;51:695–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tian Z, Xu Y, Warner CM. Removal of Qa-2 antigen alters the Ped gene phenotype of preimplantation mouse embryos. Biol Reprod. 1992;47:271–6.

    Article  PubMed  CAS  Google Scholar 

  31. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    Article  PubMed  CAS  Google Scholar 

  32. Tang F, Hajkova P, Barton SC, Lao K, Surani MA. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006;34:e9.

    Article  PubMed  Google Scholar 

  33. Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–8.

    Article  PubMed  CAS  Google Scholar 

  34. Purnell ET, Warner CM, Kort HI, Mitchell-Leef D, Elsner CW, Shapiro DB, Massey JB, Roudebush WE. Influence of the preimplantation embryo development (Ped) gene on embryonic platelet-activating factor (PAF) levels. J Assist Reprod Genet. 2006;23:269–73.

    Article  PubMed  Google Scholar 

  35. Boiso I, Veiga A, Edwards RG. Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer. Reprod Biomed Online. 2002;5:328–50.

    Article  PubMed  CAS  Google Scholar 

  36. Wharf E, Dimitrakopoulos A, Khalaf Y, Pickering S. Early embryo development is an indicator of implantation potential. Reprod Biomed Online. 2004;8:212–8.

    PubMed  Google Scholar 

  37. Jurisicova A, Casper RF, MacLusky NJ, Mills GB, Librach CL. HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci U S A. 1996;93:161–5.

    Article  PubMed  CAS  Google Scholar 

  38. Comiskey M, Goldstein CY, De Fazio SR, Mammolenti M, Newmark JA, Warner CM. Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum Immunol. 2003;64:999–1004.

    Article  PubMed  CAS  Google Scholar 

  39. Clements CS, Kjer-Nielsen L, Kostenko L, Hoare HL, Dunstone MA, Moses E, Freed K, Brooks AG, Rossjohn J, McCluskey J. Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U S A. 2005;102:3360–5.

    Article  PubMed  CAS  Google Scholar 

  40. Comiskey M, Domino KE, Warner CM. HLA-G is found in lipid rafts and can act as a signaling molecule. Hum Immunol. 2007;68:1–11.

    Article  PubMed  CAS  Google Scholar 

  41. Fuzzi B, Rizzo R, Criscuoli L, Noci I, Melchiorri L, Scarselli B, Bencini E, Menicucci A, Baricordi OR. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol. 2002;32:311–5.

    Article  PubMed  CAS  Google Scholar 

  42. Sher G, Keskintepe L, Nouriani M, Roussev R, Batzofin J. Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‘embryo competency’ and IVF outcome. Reprod Biomed Online. 2004;9:74–8.

    PubMed  Google Scholar 

  43. Yie SM, Balakier H, Motamedi G, Librach CL. Secretion of human leukocyte antigen-G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertil Steril. 2005;83:30–6.

    Article  PubMed  CAS  Google Scholar 

  44. Desai N, Filipovits J, Goldfarb J. Secretion of soluble HLA-G by day 3 human embryos associated with higher pregnancy and implantation rates: assay of culture media using a new ELISA kit. Reprod Biomed Online. 2006;13:272–7.

    PubMed  CAS  Google Scholar 

  45. Rebmann V, Switala M, Eue I, Schwahn E, Merzenich M, Grosse-Wilde H. Rapid evaluation of soluble HLA-G levels in supernatants of in vitro fertilized embryos. Hum Immunol. 2007;68:251–8.

    Article  PubMed  CAS  Google Scholar 

  46. Sargent I, Swales A, Ledee N, Kozma N, Tabiasco J, Le Bouteiller P. sHLA-G production by human IVF embryos: can it be measured reliably? J Reprod Immunol. 2007;75:128–32.

    Article  PubMed  CAS  Google Scholar 

  47. Hviid TV. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update. 2006;12:209–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Paula Lampton for technical assistance with the culture of the embryonic stem cells. We thank Michele Mammolenti and Robert Crooker for expert care of the mice. Supported by NIH grant HD39215, the Gordon Center for Subsurface Sensing and Imaging Systems (NSF EEC-9986821), and a NSF GK-12 pre-doctoral fellowship to M.B. (NSF-0338255)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol M. Warner.

Additional information

Capsule

Expression of miR-125a increases during preimplantation mouse embryo development and is 10 times higher in B6.K1 (Ped negative) mice than in B6.K2 (Ped positive) mice by the blastocyst stage of development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, M.J., Warner, C.M. MicroRNA expression in preimplantation mouse embryos from Ped gene positive compared to Ped gene negative mice. J Assist Reprod Genet 25, 205–214 (2008). https://doi.org/10.1007/s10815-008-9211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9211-8

Keywords

Navigation