Skip to main content
Log in

Spectrophotometric Methods for the Determination of Chloramphenicol, Dexamethasone Sodium Phosphate, and Tetrahydrozoline HCl in their Pure and Ophthalmic Dosage Forms

  • Published:
Journal of Applied Spectroscopy Aims and scope

Chloramphenicol (CHL), dexamethasone sodium phosphate (DSP), and tetrahydrozoline HCl (THZ) are co-formulated for conjunctivitis treatment. The ternary mixture could not be simultaneously determined because of the overlap of the zero order absorption spectra. Herein, simple and validated UV spectrophotometric techniques have been developed for the determination of CHL, DSP, and THZ in their pure and ophthalmic dosage forms. Meanwhile, only CHL was directly determined at 284.0 nm in the range 4.0–36.0 μg/mL, while DSP and THZ were determined using single or double divisor derivative ratio spectrophotometric methods. For the single divisor derivative ratio-zero crossing spectrophotometric method (SDDR-ZC), 4.0 μg/mL CHL was used as a single divisor, where DSP and THZ were detected at 272.0 and 239.0 nm, respectively. Both DSP and THZ showed linearity ranges of 4.0–32.0 μg/mL for DSP and 3.0–24.0 μg/mL for THZ, whereas for the double divisor derivative ratio spectrophotometric method (DD-DR), (12.0 μg/mL CHL and 12.0 μg/mL THZ) and (12.0 μg/mL CHL and 12.0 μg/mL DSP) were used as double divisors for the quantitative assessment of DSP and THZ, respectively. Both DSP and THZ showed a linearity range of 4.0–32.0 μg/mL, and they were detected at 258.0 and 237.0 nm, respectively. The developed techniques were successfully applied for the determination of the three drugs in their dosage form. The proposed techniques were validated showing no significant differences when statistically compared to a reported HPLC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Janumala, P. Kumar, and A. Baran, Ocular Pharmacol. (2012), https://doi.org/10.5772/34599.

  2. S. Thangadurai, S. Shukla, and Y. Ananeyulut, Asian J. Chem., 13, 1456–1460 (2001).

    Google Scholar 

  3. F. Al-Rimawi, M. Kharoaf, Chromatogr. Res. Int., 1–6 (2011), https://doi.org/10.4061/2011/482308.

  4. D. Jeffrey and J. Christopher, Ocular Pharmacology, McGraw-Hill, New York, 1707–1737 (2006)

  5. S. N. Q. Chen, D. Zielinski, J. Chen, A. Koski, and D. Werst, J. Pharm. Biomed. Anal., 48, 732–738 (2008).

    Article  Google Scholar 

  6. A. V. del Cuvillo, J. Sastre, J. Montoro, I. Jáuregui, I. Dávila, M. Ferrer, J. Bartra, and J. Mullol, J. Invest. Allergol. Clin. Immunol., 19, Suppl. 1, 11–18 (2009).

  7. K. D. Tripathi, Jaypee Brothers Medical Publishers, New Delhi (1999).

  8. S. S. Saleh, H. M. Lotfy, N. Y. Hassan, and H. Salem, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 132, 239–248 (2014), https://doi.org/10.1016/j.saa.2014.05.004.

  9. H. M. Lotfy, S. S. Saleh, N. Y. Hassan, and H. Salem, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 126, 112–121 (2014), https://doi.org/10.1016/j.saa.2014.01.130.

  10. B. M. Eltanany, H. R. Abd El-Hadi, H. E. Zaazaa, and M. S. Eissa, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 246, 119013 (2020), https://doi.org/10.1016/j.saa.2020.119013.

  11. J. F. Farid, N. M. Mostafa, Y. M. Fayez, H. M. Essam, and B. M. ElTanany, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 120308, 1386–1425 (2021), https://doi.org/10.1016/j.saa.2021.120308.

  12. H. Salem, N. Y. Hassan, H. M. Lotfy, and S. S. Saleh, J. Chromatogr. Sci., 53, 708–715 (2015), https://doi.org/10.1093/chromsci/bmu109.

    Article  Google Scholar 

  13. M. S. Eissa, H. R. Abd El-Hadi, H. E. Zaazaa, and B. M. Eltanany, J. Planar Chromatogr., Mod. TLC (2020), https://doi.org/10.1007/s00764-020-00055-8.

  14. H. Alaani and Y. Alnukkary, Adv. Pharm. Bull., 6, 137–141 (2016), https://doi.org/10.15171/apb.2016.020.

  15. Y. Alnukkary, H. Alaani, Y. Alnukkary, and I. Alashkar, Int. J. Pharm. Sci. Rev. Res. (2015).

  16. British Pharmacopoeia, Station. Off. volume II (2013).

  17. E. Dinc, Talanta, 48, 1145–1157 (1999).

  18. J. J. B. Nevado, C. G. Cabanillas, and F. Salinas, Talanta, 39, 547–553 (1992), https://doi.org/10.1016/0039-9140(92)80179-H.

  19. F. Salinas, J. J. B. Nevado, and A. E. Mansilla, Talanta, 37, 347–351 (1990), https://doi.org/10.1016/0039-9140(90)80065-N.

  20. E. Shokry, A. E. El-gendy, and M. A. Kawy, Curr. Sci. Int., 3, 352–380 (2014).

    Google Scholar 

  21. R. M. Youssef and H. M. Maher, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 70, 1152–1166 (2008), https://doi.org/10.1016/j.saa.2007.10.049.

  22. ICH, Q1A (R2). Int. Conf. on Harmonization, IFPMA, Geneva, Switzerland (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Abd El-Hadi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 5, p. 821, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltanany, B.M., El-Hadi, H.R.A., Zaazaa, H.E. et al. Spectrophotometric Methods for the Determination of Chloramphenicol, Dexamethasone Sodium Phosphate, and Tetrahydrozoline HCl in their Pure and Ophthalmic Dosage Forms. J Appl Spectrosc 88, 1081–1087 (2021). https://doi.org/10.1007/s10812-021-01283-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01283-4

Keywords

Navigation