Skip to main content
Log in

Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology

  • Published:
Journal of Applied Spectroscopy Aims and scope

Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Summers, M. Lewis, and B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).

    Article  Google Scholar 

  2. M. Vohland, M. Ludwig, and S. Thiele-Bruhn, Geoderma, 223225, No. 1, 88–96 (2014).

    Article  ADS  Google Scholar 

  3. S. M. Tiquia, J. Lloyd, and D. A. Herms, Appl. Soil Ecol., 21, No. 1, 31–48 (2002).

    Article  Google Scholar 

  4. H. Q. Ding and Q. P. Lu, Spectrosc. Spectr. Anal., 32, No. 1, 88–91 (2012).

    Google Scholar 

  5. L. Luan, Y. Wang, and X. Li, J. Near Infrared Spectrosc., 24, No. 4, 363–372 (2016).

    Article  ADS  Google Scholar 

  6. A. M. Rady, D. E. Guyer, and W. Kirk, J. Food Eng., 135, No. 2, 11–25 (2014).

    Article  Google Scholar 

  7. W. Ng, B. P. Malone, and B. Minasny, Geoderma, 289, 150–160 (2017).

    Article  ADS  Google Scholar 

  8. A. Sakudo, Clin. Chim. Acta, 455, No. 3, 181–188 (2016).

    Article  Google Scholar 

  9. S. Jia, H. Li, and Y. Wang, Geoderma, 268, 92–99 (2016).

    Article  ADS  Google Scholar 

  10. D. J. Brown, K. D. Shepherd, and M. G. Walsh, Geoderma, 132, No. 3, 273–290 (2006).

    Article  ADS  Google Scholar 

  11. A. V. Bilgili, H. M. V. Es, and F. Akbas, J. Arid. Environ., 74, No. 2, 229–238 (2010).

    Article  Google Scholar 

  12. F. Feyziyev, M. Babayev, and S. Priori, Open J. Soil Sci., 06, No. 3, 52–58 (2016).

    Article  Google Scholar 

  13. T. Naes and H. Martens, J. Chemom., 2, No. 2, 155–167 (1988).

    Article  Google Scholar 

  14. S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).

    Article  Google Scholar 

  15. J. A. K. Suykens, J. Vandewalle, Neural Process. Lett., 9, No. 3, 293–300 (1999).

    Article  Google Scholar 

  16. R. Hecht-Nielsen, Neural Networks, 1, No. 1, 65–93 (1988).

    Google Scholar 

  17. K. Kawamura, Y. Tsujimoto, and M. Rabenarivo, Remote Sens., 9, No. 10, 1081 (2017).

    Article  ADS  Google Scholar 

  18. M. Tatzber, F. Mutsch, and A. Mentler, Appl. Spectrosc., 64, No. 10, 1167–1175 (2010).

    Article  ADS  Google Scholar 

  19. Cheng Wen Chang, D. A. Laird, and M. J. Mausbach, Soil Sci. Soc. Am. J., 65, No. 2, 480–490 (2001).

    Article  ADS  Google Scholar 

  20. S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).

    Article  Google Scholar 

  21. R. M. Balabin and E. I. Lomakina, Analyst, 136, No. 8, 1703–1712 (2011).

    Article  ADS  Google Scholar 

  22. D. K. Ghose, S. S. Panda, and P. C. Swain, J. Hydrol., 394, Nos. 3–4, 296–304 (2010).

    Article  ADS  Google Scholar 

  23. R. K. Douglas, S. Nawar, and M. C. Alamar, Sci. Total Environ., 616–617, 147–155 (2017).

  24. D. Summers, M. Lewis, and B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).

    Article  Google Scholar 

  25. L. J. Janik, S. T. Forrester, and A. Rawson, Chemom. Intell. Lab. Syst., 97, No. 2, 179–188 (2009).

    Article  Google Scholar 

  26. H. Wang and D. Hu, Brain Neural Networks, 1, 279–283 (2006).

    ADS  Google Scholar 

  27. Zhi-biao, Zhao, and Yang, J. Bionic. Eng., 5, No. 3, 253–257 (2008).

    Article  Google Scholar 

  28. Q. Zhang, Q. Li, and G. Zhang, Anal. Methods, 4, No. 7, 2039–2047 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-R. Lv.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, p. 673, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Fan, PP., Liu, Y. et al. Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology. J Appl Spectrosc 86, 765–770 (2019). https://doi.org/10.1007/s10812-019-00891-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00891-5

Keywords

Navigation