Skip to main content
Log in

Spectrophotometric Determination of Nitrogen Oxides in the Air with 2-N-Ethyl-5-Naphthol-7-Sulfonic Acid

  • Published:
Journal of Applied Spectroscopy Aims and scope

For the determination of nitrogen oxides in the air, the structure of diazo and coupling compounds was studied and tested by experiments. The conditions and methods of diazo and coupling reactions were investigated. Furthermore, a spectrophotometric method using sulfanilamide as a diazo compound and 2-N-ethyl-5-naphthol-7-sulfonic acid (N-ethyl J acid) as a coupling compound was proposed. The maximum absorption wavelength of sulfanilamide-Nethyl J acid azo compound was at 478 nm. The molar absorptivity was 4.31 × 104 L/(mol × cm) with a recovery of 98.7–100.9% and RSD of 1.85%. For nitrogen oxides, the determinate limit of this measurement was 0.015 mg/m3 and the determinate range 0.024–2.0 mg/m3. Moreover, a high degree of correlation was observed between the results obtained by the proposed method and the standard methods. The proposed method can be easily applied to determine nitrogen oxides in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kovacic and R. Somanathan, In Encyclopedia of Toxicology (3rd еd.), Ed. P. Wexler, Academic Press, Oxford, (2014), pp. 558–559.

  2. P. Anttila, J.-P. Tuovinen, and J. V. Niemi, Atm. Environ., 45, No. 4, 986–992 (2011).

    Article  Google Scholar 

  3. J. Sun, J. A. Caton, and T. J. Jacobs, Prog. Energ. Combust., 36, No. 6, 677–695 (2010).

    Article  Google Scholar 

  4. S. Henschel, A. Le Tertre, R. W. Atkinson, X. Querol, M. Pandolfi , A. Zeka, D. Haluza, A. Analitis, K. Katsouyanni, C. Bouland, M. Pascal, S. Medina, and P. G. Goodman, Atm. Environ., 117, 234–241 (2015).

    Article  Google Scholar 

  5. Y. Xiangdong, Z. Zongxiao, Q. Lili, Z. Jimu, J. Univ. Shanghai Sci. Technol., 26, No. 1, 62–70 (2004).

    Google Scholar 

  6. M. Hashimoto, E. Watanabe, C. Amano, T. Haraki, Y. Nishi, and H. H. Uchida, Appl. Surf. Sci., 255, No. 4, 1544–1546 (2008).

    Article  ADS  Google Scholar 

  7. L. Jones, A. Provins, M. Holland, G. Mills, F. Hayes, B. Emmett, J. Hall, L. Sheppard, R. Smith, M. Sutton, K. Hicks, M. Ashmore, R. Haines-Young, and L. Harper-Simmonds, Ecosyst. Serv., 7, 76–88 (2014).

    Article  Google Scholar 

  8. J. Meulenbelt. Medicine, 40, No. 3, 139 (2012).

    Article  Google Scholar 

  9. M. Kraft, T. Eikmann, A. Kappos, N. Kunzli, R. Rapp, K. Schneider, H. Seitz, J. U. Voss, and H. E. Wichmann, Int. J. Hyg. Environ. Heal, 208, No. 4, 305–318 (2005).

    Article  Google Scholar 

  10. K. T. Paul, T. R. Hull, K. Lebek, and A. A. Stec, Fire Safety J., 43, Nos. 4, 243–251 (2008).

    Article  Google Scholar 

  11. E. D. Amster, M. Haim, J. Dubnov, and D. M. Broday, Environ. Pollut., 186, 20–28 (2014).

    Article  Google Scholar 

  12. N. Zhu, H. Li, M. Han, L. Guo, L. Chen, Y. Yun, Z. Guo, G. Li, and N. Sang, Toxicol. Lett., 214, No. 2, 120–130 (2012).

    Article  Google Scholar 

  13. Y. Wang, S. H. Fan, and S. L. Wang, Anal. Chim. Acta, 541, Nos. 1–2, 129–134 (2005).

    Article  ADS  Google Scholar 

  14. M. J. Navas, A. M. Jiménez, and G. Galán, Atm. Environ., 31, No. 21, 3603–3608 (1997).

    Article  Google Scholar 

  15. H. Suzuki, Y. Miyao, T. Nakayama, J. K. Pearce, Y. Matsumi, K. Takahashi, K. Kita, and K. Tonokura, Atm. Environ., 45, No. 34, 6233–6240 (2011).

    Article  Google Scholar 

  16. C. Dari-Salisburgo, P. Di Carlo, F. Giammaria, Y. Kajii, and A. D’Altorio, Atm. Environ., 43, No. 4, 970–977 (2009).

    Article  Google Scholar 

  17. X. Q. Zhan, D. H. Li, H. Zheng, J. G. Xu, and Y. Q. Zhou, Talanta, 58, No. 5, 855–860 (2002).

    Article  Google Scholar 

  18. C. Reidl-Leuthner, J. Ofner, W. Tomischko, H. Lohninger, and B. Lendl, Atm. Environ., 112, 189–195 (2015).

    Article  Google Scholar 

  19. O. V. Yagodina, E. B. Nikolskaya, and N. B. Shor, Anal. Chim. Acta, 409, Nos. 1–2, 143–147 (2000).

    Article  Google Scholar 

  20. C. Meyer, R. Baumann, A. Günther, V. Vashook, T. Schmiel, U. Guth, and S. Fasoulas, Sensor. Actuat. B Chem., 181, 77–84 (2013).

    Article  Google Scholar 

  21. K. Horita, G. Wang, and M. Satake, Anal. Chim. Acta, 350, No. 3, 295–303 (1997).

    Article  Google Scholar 

  22. I. T. 146. ISO 6768-1998 (1998).

  23. M. Barzegar, M. F. Mousavi, and A. Nemati, Microchem. J., 65, No. 2, 159–163 (2000).

    Article  Google Scholar 

  24. U S-ASTM. ASTM D 3608-95 (2011).

  25. Ministry of Environmental Protection of the People's Republic of China. HJ 479-2009 (2009).

  26. Y. Huang, W. Shi, C. Zhang, L. Li, and H. Wen, Atm. Pollut. Res., 7, No. 2, 333–338 (2016).

    Article  Google Scholar 

  27. I. T. 146. ISO 7996-1985 (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Shi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, pp. 616–622, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Shi, W., Zhang, C. et al. Spectrophotometric Determination of Nitrogen Oxides in the Air with 2-N-Ethyl-5-Naphthol-7-Sulfonic Acid. J Appl Spectrosc 84, 639–645 (2017). https://doi.org/10.1007/s10812-017-0522-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0522-3

Keywords

Navigation