Skip to main content
Log in

Simple and Rapid Quantitative Determination of Thiol-Containing Toxicants Using Silver Nanoparticles as an Affinity Probe

  • Published:
Journal of Applied Spectroscopy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A rapid and low-cost nano-drop spectrophotometric method using citrate-modified silver nanoparticles (Ag NPs) for the determination of thiol-containing toxicants was developed. The introduction of thioglycolic acid (TGA) and thiourea (TU) reduced the overall surface charge of Ag NPs, resulting in aggregation of Ag NPs, and a colorimetric response that was individually correlated with the concentration of TGA and TU. Under optimum experimental conditions, the maximum molar absorptivity values for TGA and TU were 1.04 × 105 and 2.13 × 105 L × mol–1 × cm–1, respectively, at λmax of 415 nm. The linear range used was 0.5–2.5 mg/L for TGA, and 0.3–1.5 mg/L for TU. The detection limits (3S) and % relative standard deviation (RSD) for the method were found to be 3 ppb, 2 ppb, and ±1.13%, ±0.96% for TGA and TU, respectively. This new chromogenic method provided a facile and sensitive scheme for the determination of TGA and TU, and could be applied for the determination of thiol-containing biomolecules. This scheme was tested for the analysis of real samples such as urine, blood, and environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rippel, In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2012).

  2. J. Am. Coll. Toxicol., 10, 1, 135–192 (1991).

  3. S. Z. Yao, F. J. He, and L. H. Nie, Anal. Chim. Acta, 268, 311–314 (1992).

    Article  Google Scholar 

  4. R. F. Renner and K. C. Liddell, J. Appl. Electrochem., 32, 621–627 (2002).

    Article  Google Scholar 

  5. N. Spataru and F. G. Banica, Analyst, 126, 1907–1911 (2001).

    Article  ADS  Google Scholar 

  6. M. R. Smyth and J. G. Osteryoung, Anal. Chem., 49, 2310–2314 (1977).

    Article  Google Scholar 

  7. N. Spataru, T. Spataru, and A. Fujishima, Electroanalysis, 17, 800–805 (2005).

    Article  Google Scholar 

  8. Concise International Chemical Assessment Document, World Health Organization, Geneva, 49 (2003).

  9. S. N. Giri and A. B. Combs, Toxicol. Appl. Pharmacol., 16, 709–717 (1970).

    Article  Google Scholar 

  10. L. Kanerva, T. Estlander, and R. Jolanki, Contact Derm., 31, 242–248 (1994).

    Article  Google Scholar 

  11. US Department of Health and Human Service, Fourth Ann. Rep. Carcinogens, US Government Printing Office, Washington, DC (1985).

  12. I. V. Koval, Russ. J. Org. Chem., 43, 319–346 (2007).

    Article  Google Scholar 

  13. A. Meister and M. E. Anderson, Annu. Rev. Biochem., 52, 711–760 (1983).

    Article  Google Scholar 

  14. G. Wu, Y. Z. Fang, S. Yang, J. R. Lupton, and N. D. Turner, Nutrition, 13, 489–492 (2004).

    Google Scholar 

  15. K. Agrawal, H. F. Wu, and K. Shrivas. Rapid Commun. Mass Spectrom., 22, 1437–1444 (2008).

    Article  Google Scholar 

  16. W. Ciesielski and R. Zakrzewski, Chem. Anal (Warsaw), 51, 653–678 (2006).

  17. H. J. Bowley, E. A. Crathorne, and D. L. Gerrard, Analyst, 111, 539–542 (1986).

    Article  ADS  Google Scholar 

  18. N. Wang and W. L. Budde, Anal. Chem., 73, 997–1006 (2001).

    Article  Google Scholar 

  19. K. Kargosha, M. Khanmohammadi, and M. Ghadiri, Anal. Chim. Acta, 437, 139–143 (2001).

    Article  Google Scholar 

  20. I. Debbarh and N. Moore, J. Anal. Toxicol., 26, 216–221 (2004).

    Article  Google Scholar 

  21. D. Nematollahi and M. Rafiee, Sensors, 3, 534–543 (2003).

    Article  Google Scholar 

  22. W. Feng-Wu, A. Xin-Ping, Y. Cheng-Nong, H. Zhi-Ke, M. Hui, and Z. Yun-E, J. Nat. Sci., 7, 341–344 (2002).

    Google Scholar 

  23. H. Wei, B. Li, and S. Dong, Chem. Commun., 28, 3735–3737 (2007).

    Article  Google Scholar 

  24. M. R. Horomozi Nehzad, J. Tashkhurion, and Khodaveisi, J. Iran. Chem. Soc., 7, S83–S91 (2010).

  25. H. Y. Zhou, C. Zhao, Li, and Y. He, Talanta, 97, 331–336 (2012).

  26. S. Kim, J. W. Park, and D. Kim, Chem. Int., 48, 4138–4141 (2009).

    Article  Google Scholar 

  27. J. Zhang, L. Wang, D. Pan, S. Song, F. Y. Boey, H. Zhang, and C. Fan, Small, 4, 1196–1200 (2008).

    Article  Google Scholar 

  28. H. Nakashima and N. Yoshida, Chem. Lett., 35, 168–169 (2006).

    Article  Google Scholar 

  29. Ratyakshi and R. P. Chauhan, Asian J. Chem., 21, S113–S116 (2009).

  30. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293–346 (2004).

    Article  Google Scholar 

  31. V. V. Pinto, M. J. Ferreira, R. Silva, H. A. Santos, F. Silva, and C. M. Pereira, Colloids Surf., A 364, 19–25 (2010).

  32. Z. Y. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, J. Phys. Chem. B, 108, 4046–4052 (2004).

    Article  Google Scholar 

  33. B. A. Grzybowski, R. Klajn, and J. F. Stoddart, Chem. Soc. Rev., 39, 2203–2237 (2010).

    Article  Google Scholar 

  34. G. L. Wang, Y. M. Dong, X. Y. Zhu, W. J. Zhang, C. Wang, and H. J. Jiao, Analyst, 136, 5256–5260 (2011).

    Article  ADS  Google Scholar 

  35. M. J. Ahmed and M. S. Alum, Spectroscopy, 17, 45 (2003).

    Article  Google Scholar 

  36. A. Safavi and A. R. Banazadeh, Food Chem., 105, 1106–1111 (2007).

    Article  Google Scholar 

  37. K. Agrawal and H. F. Wu, Rapid Commun. Mass Spectrom., 21, 3352–3356 (2007).

    Article  Google Scholar 

  38. S. Z. Yao, F. J. He, L. H. Nie, Anal. Chim. Acta, 268, 311–314 (1992).

    Article  Google Scholar 

  39. N. Spataru, T. Spataru, and A. Fujishima, Electroanalysis, 17, 800–805 (2005).

    Article  Google Scholar 

  40. A. N. De Oliveira, H. De Santana H., C. T. B. V. Zaia, and D. A. M. Zaia, J. Food Compos. Anal., 17, 165–177 (2004).

  41. S. Abbasi, H. Khani, M. B. Gholivand, A. Naghipour, A. Farmany, and F. Abbasi, Spectrochim. Acta, A 72, 327–331 (2009).

  42. V. Cavrini, V. Andrisano, I. R. Gatt, and G. Scapini, Int. J. Cosmet. Sci., 12, 141–150 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tapadia.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 6, p. 1007, November–December, 2016.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tapadia, K. Simple and Rapid Quantitative Determination of Thiol-Containing Toxicants Using Silver Nanoparticles as an Affinity Probe. J Appl Spectrosc 83, 1068–1075 (2017). https://doi.org/10.1007/s10812-017-0409-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0409-3

Keywords

Navigation