Skip to main content

Advertisement

Log in

In situ Determination of Fluoride in Groundwater Using N-Octyl Acetamide with Iron(III)–Thiocyanate Complex

  • Published:
Journal of Applied Spectroscopy Aims and scope

This paper describes the nanodrop spectrophotometric determination of fluoride (F) in a ground water sample using the organic reagent N-octylacetamide (N-OAA) with iron(III)–thiocyanate complex. The iron(III)–thiocyanate complex was extracted with a chloroform solution of amide (N-phenylacetamide, N-alkylacetamide, alkyl = butyl, phenyl, hexyl, and octyl group). This method is based upon the bleaching effect of fluoride on the red-colored extracted complex of iron(III)–thiocyanate-OAA in chloroform. The absorbance of the extract was measured pre and post F addition at λmax = 470 nm against the reagent blank. The limit of detection and %RSD of F was 38 μg/L and ±1.6%. The designed work followed Beer’s law between 0.5 to 10 μg/mL with slope, intercept, and correlation coefficient values of −0.1101, 1.116, and −0.997, respectively. Furthermore, the applicability of the present investigation was extended for the determination of F in a groundwater sample, and the results obtained were compared with those from another reported method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Fejerskov, Fluoride in Dentistry, Iowa State Press, Ames, IA, USA (1996).

    Google Scholar 

  2. N. V. Castioni, P. C. Baehni, and R. Gurny, Eur. J. Pharm. Biopharm., 45, 101–111 (1998).

    Article  Google Scholar 

  3. Standard Methods for the Examination of Water and Wastewater, Method 4500 FD, American Public Health Association, Washington, Ed. 20, 4–62 (1998).

  4. EPA Methods for Chemical Analysis of Water and Wastes, Method 340.1, US Environmental Protection Agency, Washington (1978).

  5. M. Upadhyay, Cost to Economy & Health, 5, 1–22 (2012).

    MathSciNet  Google Scholar 

  6. B. Gutsche, H. Kleinoeder, and R. Herrmann, Analyst, 100, 192–197 (1975).

    Article  ADS  Google Scholar 

  7. J. M. Gehlhausen and J. W. Carnahan, Anal. Chem., 61, 674–677 (1989).

    Article  Google Scholar 

  8. M. E. Leon-Gonzalez, M. J. Santos-Delgado, and L. M. Polo-Diez, Anal. Chim. Acta, 219, 329–333 (1988).

    Article  Google Scholar 

  9. M. E. Leon-Gonzalez, M. J. Santos-Delgado, and L. M. Polo-Diez, Anal. Chim. Acta, 178, 331 (1985).

    Article  Google Scholar 

  10. P. Jones, Anal. Chim. Acta, 258,123–127 (1992).

    Article  Google Scholar 

  11. A. E. Villa, Analyst, 113, 1299–1303 (1988).

    Article  ADS  Google Scholar 

  12. M. Garrido, A. G. Lista, M. Palomeque, and B. S. Fernandez Band, Talanta, 58, 849–853 (2002).

    Article  Google Scholar 

  13. P. Wang, S. F. Li, and H. K. Lee, Electrophoresis, 24, 12–13 (2003).

    Article  Google Scholar 

  14. W. Bernhard, Anal. Chim. Acta, 647, 137–148 (2009).

    Article  Google Scholar 

  15. A. J. Arancibia, A. Rullo, C. Alejandro Olivieri, S. Di Nezio, M. Pistonesi, A. Lista, S. Beatriz, and F. Band, Anal. Chim. Acta, 512, 157–163 (2004).

    Article  Google Scholar 

  16. S. A. Santos. Metodos Normalizados para el Analisis de Aguas Potablesy Residuales, Ed. Daz, American Public Health Association, 4–99 (1992).

  17. R. W. Kahama, J. J. Damen, and J. M. Cate, Analyst, 122, 855–858 (1997).

    Article  ADS  Google Scholar 

  18. K. Perdikaki, I. Tsagkatakis, N. A. Chaniotakis, R. Altmann, K. Jurkschat, and G. Reeske, Anal. Chim. Acta, 467, 197–204 (2002).

    Article  Google Scholar 

  19. V. L. Dressler, D. Pozebon, E. L. Flores, J. N. Paniz, J. N. Erico, and M. M. Flores, Anal. Chim. Acta, 466, 117–123 (2002).

    Article  Google Scholar 

  20. F. C. Chang, H. T. Tsai, and S. C. Wu, J. Chin. Chem. Soc., 22, 309 (1975)

    Article  Google Scholar 

  21. M. Burguera, A. Townshend, and S. L. Bogdanski, Anal. Chim. Acta, 11, 247–255 (1980).

    Article  Google Scholar 

  22. Z. Kokot and B. Kupicwicz, Acta Pol. Pharm. Drug Res., 55, No. 6, 423–428 (1998).

    Google Scholar 

  23. E. D. Paul, C. E. Gimba, J. A. Kagbu, G. I. Ndukwe, and F. G. Okibe, J. Basic. Appl. Chem., 6, 33–38 (2011).

    Google Scholar 

  24. M. A. Faraj-Zadeh and E. G. Kalhor. Mikrochim. Acta, 137, 169–171 (2001).

    Article  Google Scholar 

  25. Z. J. Huang, Y. L. Yang, G. Y. Yang, J. Y. Yin, and F. Huaxue, Anal. Chim. Acta, 27, 1363 (1999).

    Google Scholar 

  26. M. A. Farajzadeh, J. Chin. Chem. Soc., 51, 303–308 (2004).

    Article  Google Scholar 

  27. Z. Barghouthi and S. Amereih, Am. J. Anal. Chem., 3, 651–655 (2012).

    Article  Google Scholar 

  28. K. Agrawal, K. S. Patel, K. Shriwas, V. K. Jain, and F. Khan, J. Hazard. Mater., 164, 95–98 (2009).

    Article  Google Scholar 

  29. A. Ghosh, K. S. Patel, and R. S. Mishra, J. Radioanal Nucl. Chem., 152, 243 (1991).

    Article  Google Scholar 

  30. K. S. Patel, A. Shukla, A. Goswami, S. K. Chandavanshi, and P. Hoffmann, Fresenius J. Anal. Chem., 369, 530 (2001).

    Article  Google Scholar 

  31. http://www.nanodrop.com/library/nd-1000-v3.7-users-manual-8.5x11.pdf.

  32. A. I. Vogel, A Textbook of Practical Organic Chemistry, Longman, Green, London, 3 (1962).

  33. A. N. Tripathi, S. Chikhalikar, and K. S. Patel, J. Automatic Chem., 19, 45–50 (1997).

    Article  Google Scholar 

  34. J. M. Richard, Cationic Surfactants: Organic Chemistry, Fatty Acid Amide, Surfactants, CRC Press, New York, USA, 1–29 (1990).

    Google Scholar 

  35. Z. Barghouthi and S. Amereih, Water SA, 38, 543–548 (2012).

    Article  Google Scholar 

  36. M. T. Beck, In "Chemistry of Complex Equilibria", Ed. R. A. Chalmers, Van Nostrand Reinhold, London (1970).

  37. R. Sahin and K. Tapadia, Int. J. Res. Adv. Technol., 6, 418–428 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tapadia.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 3, pp. 445–449, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, R., Tapadia, K. & Sharma, A. In situ Determination of Fluoride in Groundwater Using N-Octyl Acetamide with Iron(III)–Thiocyanate Complex. J Appl Spectrosc 83, 437–441 (2016). https://doi.org/10.1007/s10812-016-0307-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0307-0

Keywords

Navigation