Skip to main content
Log in

Structure and spectroscopic properties of organoclays doped by multiwall carbon nanotubes

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method to modify a montmorillonite (MMT) clay mineral (CM) surface by surfactant (SA) cations with simultaneous doping by multiwall carbon nanotubes (MWNT) has been proposed. The structure and spectroscopic properties of composites based on MMT from two deposits (Cherkassy and Pyzhevsk, Ukraine) that differ in the inorganic impurity contents and cation-exchange capacities (CEC) have been investigated. Cetyltrimethylammonium bromide (CTAB) was used as the SA. According to x-ray diffraction analysis, CTA+ cations intercalated into MMT interplanar spaces expand them significantly whereas MWNTs do not affect the MMT galleries due to the much larger sizes of the former. Studies of the composite materials by IR spectroscopy revealed the mutual influence of the components appearing as the ordering of near-surface layers in the aluminosilicate framework and a change in the modifier methylene chain conformation at the interphase boundary. The majority of CTAB (~90%) is shown to be located inside the MMT galleries, the packing arrangement of which depends on the CEC value and affects the interplanar distances in MMT. The alkyl chains of the CTA+ cations on the outer surface of the MMT plates are sorbed by nanotubes, thus providing contact between the organoclay and MWNT surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dawid and Z. Gburski, J. Non-Cryst. Solids, 353, 4339–4343 (2007).

    Article  ADS  Google Scholar 

  2. N. Lebovka, T. Dadakova, L. Lysetskiy, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran, and M. Drozd, J. Mol. Struct., 889, 135–143 (2008).

    Article  ADS  Google Scholar 

  3. N. Lebovka, A. Goncharuk, V. Melnik, and G. Puchkovska, Physica, E, 41, 1554–1560 (2009).

    Article  ADS  Google Scholar 

  4. R. Rastogi, R. Kaushal, S, K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, J. Colloid Interface Sci., 328, 421–428 (2008).

    Article  Google Scholar 

  5. M. Lisunova, N. Lebovka, O. Melezhyk, and Yu. Boyko, J. Colloid Interface Sci., 299, 740–746 (2006).

    Article  Google Scholar 

  6. S. Peeterbroeck, M. Alexandre, J. B. Nagy, C. Pirlot, A. Fonseca, N. Moreau, G. Philippin, J. Deelhalle, Z. Mekhalif, R. Sponken, G. Beyer, and P. Duboes, Compos. Sci. Technol., 64, 2317–2323 (2004).

    Article  Google Scholar 

  7. J. P. Zhang and A. Q. Wang, Express Polymer Lett., 3, No. 5, 302–308 (2009).

    Article  Google Scholar 

  8. B. H. Cho, I. R. Hwang, Y.-S. Lee, J. M. Jeong, K. J. Son, and C. Nan, J. Nanosci. Nanotechnol., 8, No. 10, 5516–5520 (2008).

    Article  Google Scholar 

  9. S. Bourbigot, S. Duquesne, G .Fontaine, S. Bellayer, T. Turf, and F. Samyn, Mol. Cryst. Liq. Cryst., 486, 325/[1367]–339/[1381] (2008).

    Article  Google Scholar 

  10. S. Bourbigot, S. Duquesne, and C. Jama, Macromol. Symposia, 233, 180–190 (2006).

    Article  Google Scholar 

  11. P. Dubais and M. Alexandre, Adv. Eng. Mater., 8, No. 3, 147–154 (2006).

    Article  Google Scholar 

  12. G. Beyer, Fire Mater., 29, No. 2, 61–69 (2005).

  13. D. Gournis, M. A. Karakassides, T. Bakas, N. Boukos, and D. Petridis, Carbon, 40, 2641–2646 (2002).

    Article  Google Scholar 

  14. X. Du, Z. Jiang, X. Meng, Z. Wang, H. Yu, M. Li, and T. Tang, J. Phys. Chem. C, 112, No. 17, 6638–6642 (2008).

    Article  Google Scholar 

  15. L. Stobinski, J. Mazurkiewicz, P. Tomasik, J. Peszke, and H. M. Lin, Mater. Sci. Poland, 25, No. 3, 679–686 (2007).

    Google Scholar 

  16. C. Wei, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 085409 (1–7) (2009).

  17. E. G. Kukovskii, Structural Features and Physicochemical Properties of Clay Minerals [in Russian], Naukova Dumka, Kiev (1966); pp. 3–10, 51–53, 78.

  18. J. Zhu, H. He, L. Zhu, X. Wen, and F. Deng, J. Colloid Interface Sci., 286, 239–244 (2005).

    Article  Google Scholar 

  19. C. Shang, J. Rice, and J. Lin, Soil Sci. Soc. Am. J., 66, 1225–1230 (2002).

    Article  Google Scholar 

  20. P. Praus, M. Turicova, S. Studentova, and M. Retz, J. Colloid Interface Sci., 304, 29–36 (2006).

    Article  Google Scholar 

  21. T. Bezrodna, I. Chashechnikova, V. Nesprava, G. Puchkovska, Ye. Shaydyuk, Yu. Boyko J. Baran, and M. Drozd, Liq. Cryst., 37, 263–270 (2010).

    Article  Google Scholar 

  22. I. Chashechnikova, L. Dolgov, T. Gavrilko, G. Puchkovska, Ye. Shaydyuk, N. Lebovka, V. Moraru, J. Baran, and H. Ratajczak, J. Mol. Struct., 744–747, 563–571 (2005).

    Article  Google Scholar 

  23. A. V. Melezhik, Yu. I. Sementsov, and V. V. Yanchenko, Zh. Prikl. Khim., 78, No. 6, 938–944 (2005).

    Google Scholar 

  24. Yu. I. Tarasevich and F. D. Ovcharenko, Adsorption on Clay Minerals [in Russian], Naukova Dumka, Kiev (1975), pp. 3–5, 33–36, 53, 58–64, 75, 109–111, 239–243.

  25. T. V. Bezrodna, G. V. Klishevich, V. I. Melnik, V. V. Nesprava, G. A. Puchkovska, and I. T. Chashechnikova, Zh. Prikl. Spektrosk., 77, No. 6, 770–774 (2010).

    Google Scholar 

  26. J. Madejova, Vib. Spectrosc., 31, 1–10 (2003).

    Article  Google Scholar 

  27. N. D. Sokolov (ed.), Hydrogen Bond [in Russian], Nauka, Moscow (1981), pp. 112–155.

    Google Scholar 

  28. K. Suga and J. Rusling, Langmuir, 9, 3649–3655 (1993).

    Article  Google Scholar 

  29. S. Makarenko and G. Puchkovska, Ukr. Fiz. Zh., 19, 421–426 (1974).

    Google Scholar 

  30. S. Makarenko and G. Puchkovska, Ukr. Fiz. Zh., 20, 476–483 (1975).

    Google Scholar 

  31. A. Babkov, G. Puchkovska, S. Makarenko, and T. Gavrilko, IR Spectroscopy of Molecular Crystals with Hydrogen Bonds [in Russian], Naukova Dumka, Kiev (1989), p. 30.

    Google Scholar 

  32. V. Vand, Acta Crystallogr., 4, 104–105 (1951).

    Article  MathSciNet  Google Scholar 

  33. G. Puchkovskaya, V. Danchuk, A. Kravchuk, and J. Kukielski, J. Mol. Struct., 704, 119–123 (2004).

    Article  ADS  Google Scholar 

  34. T. Bezrodna, G. Puchkovska, V. Styopkin, J. Baran, M. Drozd, V. Danchuk, and A. Kravchuk, J. Mol. Struct., 973, 47–55 (2010).

    Article  ADS  Google Scholar 

  35. I. Gnatyuk, N. Platonova, G. Puchkovska, E. Kotelnikova, S. Filatov, J. Baran, and M. Drozd, Zh. Strukt. Khim., 48, No. 4, 705–716 (2007).

    Google Scholar 

  36. H. Heinz, R. Vaia, R. Krishnamoorti, and B. Farmer, Chem. Mater., 19, 59–68 (2007).

    Article  Google Scholar 

  37. L. Ricard, R. Cavagnat, and M. Rey-Lafon, J. Phys. Chem., 89, 4887–4894 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Puchkovskaya.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 78, No. 1, pp. 56–65, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezrodnaya, T.V., Nesprava, V.V., Puchkovskaya, G.A. et al. Structure and spectroscopic properties of organoclays doped by multiwall carbon nanotubes. J Appl Spectrosc 78, 50–58 (2011). https://doi.org/10.1007/s10812-011-9424-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-011-9424-y

Keywords

Navigation