Skip to main content
Log in

Hints for understanding microalgal phosphate-resilience from Micractinium simplicissimum IPPAS C-2056 (Trebouxiophyceae) isolated from a phosphorus-polluted site

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A novel chlorophyte algae strain with outstanding resilience to high inorganic phosphate (Pi) concentrations in the medium was isolated from a phosphorus-polluted site near a rock phosphate mine. According to the morphological, ultrastructural and genetic criteria the strain was assigned to the species Micractinium simplicissimum H.Chae, H.-G. Choi & J.H.Kim. This strain retained cell viability and growth capacity in the presence of Pi concentrations up to 14 g L–1. The uptake of Pi by the cells was moderate (equal to ca. 0.7% increase in cell dry weight P percentage) regardless of the amount of the exogenic Pi added to the culture. At the same time, approximately a half of the Pi removed by the M. simplicissimum from the culture was reversely adsorbed by the cell surface and/or the intercellular matrix and cell debris. The ultrastructural studies indicated the metabolically active status of the cells together with the presence of phosphorus-rich (likely, polyphosphate) inclusions outside and inside the cells (mainly in vacuoles). We hypothesized that the Pi resilience of the studied strain stems from its high Pi adsorption capacity together with its ability to throttle the Pi influx into the cell preventing the rapid buildup of intracellular Pi and potentially toxic short-chain polyphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F (2015) ITS2 database V: Twice as much. Mol Biol Evol 32:3030–3032

    Article  CAS  PubMed  Google Scholar 

  • Bogdan A, Robles-Aguilar AA, Liang Q, Pap S, Michels E, Meers E (2022) Substrate-driven phosphorus bioavailability dynamics of novel inorganic and organic fertilizing products recovered from municipal wastewater—tests with ryegrass. Agronomy 12:292

    Article  CAS  Google Scholar 

  • Brown N, Shilton A (2014) Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Bio/technol 13:321–328

    Article  CAS  Google Scholar 

  • Burczyk J, Zych M, Ioannidis NE, Kotzabasis K (2014) Polyamines in cell walls of chlorococcalean microalgae. Z Naturforsch C 69:75–80

  • Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part I. Crit Rev Microbiol 10:317–391

    Article  Google Scholar 

  • Cembella A, Antia N, Haerrison P, Rhee G-Y (1984) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 2. Crit Rev Microbiol 11:13–81

    Article  CAS  PubMed  Google Scholar 

  • Chae H, Lim S, Kim HS, Choi H-G, Kim JH (2019) Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34:267–275

    Article  Google Scholar 

  • Cordell D, White S (2014) Life’s bottleneck: implications of global phosphorus scarcity and pathways for a sustainable food system. Annu Rev Environ Res 39:161–188

    Article  Google Scholar 

  • Czelusniak J, Goodman M, Moncrief ND, Kehoe SM (1990) Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences. Meth Enzymol 183:601–615

    Article  CAS  Google Scholar 

  • Das P, Quadir MA, Thaher MI, Alghasal GSHS, Aljabri HMSJ (2019) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. Int J Environ Sci Technol 16:3355–3364

    Article  CAS  Google Scholar 

  • de Mazancourt C, Schwartz MW (2012) Starve a competitor: evolution of luxury consumption as a competitive strategy. Theoret Ecol 5:37–49

    Article  Google Scholar 

  • de Siqueira Castro J, Calijuri ML, Ferreira J, Assemany PP, Ribeiro VJ (2020) Microalgae based biofertilizer: A life cycle approach. Sci Total Environ 724:138138

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 155–183

    Chapter  Google Scholar 

  • Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:51–60

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fu L, Li Q, Yan G, Zhou D, Crittenden JC (2019) Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnol Biofuels 12:121

  • Gerasimaite R, Sharma S, Desfougeres Y, Schmidt A, Mayer A (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127:5093–5104

    PubMed  Google Scholar 

  • Gorelova O, Baulina O, Solovchenko A, Selyakh I, Chivkunova O, Semenova L, Scherbakov P, Burakova O, Lobakova E (2015) Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 197:181–195

    Article  CAS  PubMed  Google Scholar 

  • Haneklaus S, Bloem H, Schnug E (2018) Hungry plants—a short treatise on how to feed crops under stress. Agriculture 8:43

  • Hong JW, Jo SW, Cho HW, Nam SW, Shin W, Park KM, Lee KI, Yoon HS (2015) Phylogeny, morphology, and physiology of Micractinium strains isolated from shallow ephemeral freshwater in Antarctica. Phycol Res 63:212–218

    Article  CAS  Google Scholar 

  • Hoshina R, Iwataki M, Imamura N (2010) Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycol Res 58:188–201

    Article  CAS  Google Scholar 

  • Ismagulova T, Chekanov K, Gorelova O, Baulina O, Semenova L, Selyakh I, Chivkunova O, Lobakova E, Karpova O, Solovchenko A (2017) A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling. J Appl Phycol 30:2737–2750

    Article  Google Scholar 

  • Jämsä M, Lynch F, Santana-Sánchez A, Laaksonen P, Zaitsev G, Solovchenko A, Allahverdiyeva Y (2017) Nutrient removal and biodiesel feedstock potential of green alga UHCC00027 grown in municipal wastewater under Nordic conditions. Algal Res 26:65–73

    Article  Google Scholar 

  • Kokabi K, Gorelova O, Ismagulova T, Itkin M, Malitsky S, Boussiba S, Solovchenko A, Khozin-Goldberg I (2019) Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. Plant Sci 283:95–115

    Article  CAS  PubMed  Google Scholar 

  • Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky M, Solovchenko A, Boussiba S, Khozin-Goldberg I (2020) Lipidome remodeling and autophagic respose in the arachidonic-acid-rich microalga Lobosphaera incisa under nitrogen and phosphorous deprivation. Front Plant Sci 11:1852

    Article  Google Scholar 

  • Komárek J, Fott B (1983) Das Phytoplankton des Süßwassers. Systematik und Biologie vol 16. Die Binnengewässer. Schweitzerbartsche Velagsbuchhandlung, Stuttgart

  • Krienitz L, Bock C (2012) Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698:295–326

    Article  Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VA, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542

    Article  Google Scholar 

  • Krienitz L, Takeda H, Hepperle D (1999) Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia 38:100–107

    Article  Google Scholar 

  • Krivina E, Temraleeva A (2020) Identification problems and cryptic diversity of Chlorella-clade microalgae (Chlorophyta). Microbiology 89:720–732

    Article  CAS  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734

    Article  CAS  PubMed  Google Scholar 

  • Kulaev I, Vagabov I, Kulakovskaya T (2004) The biochemistry of inorganic polyphosphates. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Li Q, Fu L, Wang Y, Zhou D, Rittmann BE (2018) Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresour Technol 268:266–270

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Pflugmacher S, Pröschold T, Walz N, Krienitz L (2006) Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157:315–333

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Proeschold T, Bock C, Krienitz L (2010) Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biol 12:545–553

    Article  CAS  PubMed  Google Scholar 

  • Maltsev Y, Gusev E, Maltseva I, Kulikovskiy M, Namsaraev Z, Petrushkina M (2018) Description of a new species of soil algae, Parietochloris grandis sp. nov., and study of its fatty acid profiles under different culturing conditions. Algal Res 33:358–368

    Article  Google Scholar 

  • Mukherjee D, Ray R, Biswas N (2020) Mining phosphate from wastewater: treatment and reuse. In: Stagner JA, Ting DS.-K. (eds) Sustaining Resources for Tomorrow. Springer, Cham, pp 67–81.

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  PubMed  Google Scholar 

  • Nemcova Y, Kalina T (2000) Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Arch Hydrobiol 136:95–106

    CAS  Google Scholar 

  • Oosthuizen DJ, Cloete TE (2001) SEM-EDS for determining the phosphorus content in activated sludge EPS. Water Sci Technol 43:105–112

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ray K, Mukherjee C, Ghosh AN (2013) A way to curb phosphorus toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environ Sci Technol 47:11378–11379

    Article  CAS  PubMed  Google Scholar 

  • Reynolds E (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:9040192

    Article  Google Scholar 

  • Sañudo-Wilhelmy SA, Tovar-Sanchez A, Fu F-X, Capone DG, Carpenter EJ, Hutchins DA (2004) The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 432:897–901

    Article  PubMed  Google Scholar 

  • Selig C, Wolf M, Müller T, Dandekar T, Schultz J (2007) The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 36:D377–D380

    Article  PubMed  PubMed Central  Google Scholar 

  • Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O (2017) Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340

    Article  CAS  PubMed  Google Scholar 

  • Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A (2020) Fixing the broken phosphorus cycle: wastewater remediation by microalgal polyphosphates. Front Plant Sci 11:982

    Article  PubMed  PubMed Central  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Selyakh I, Semenova L, Ismagulova T, Lukyanov A, Mamedov I, Vinogradova E, Karpova O, Konyukhov I, Vasilieva S (2019a) Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Res 43:101651

  • Solovchenko A, Merzlyak M, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772

    Article  CAS  Google Scholar 

  • Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res 6:234–241

    Article  Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol Adv 34:550–564

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Ismagulova T, Lukyanov A, Vasilieva S, Konyukhov I, Pogosyan S, Lobakova E, Gorelova O (2019b) Luxury phosphorus uptake in microalgae. J Appl Phycol 31:2755–2770

    Article  CAS  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Microbiol Mol Biol Rev 35:171–205

    CAS  Google Scholar 

  • Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One 9:e90053

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Kohata K, Kunugi M (1988) Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm. J Phycol 24:22–28

    Article  CAS  Google Scholar 

  • Werner TP, Amrhein N, Freimoser FM (2007a) Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis. BMC Plant Biol 7:1–11

    Article  Google Scholar 

  • Werner TP, Amrhein N, Freimoser FM (2007b) Specific localization of inorganic polyphosphate (poly P) in fungal cell walls by selective extraction and immunohistochemistry. Fungal Genet Biol 44:845–852

    Article  CAS  PubMed  Google Scholar 

  • Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA 18:900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Jakob U (2019) Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J Biol Chem 294:2180–2190

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Guo L, Wang Y, Zhao Y, Jin C, Gao M, Ji J, She Z (2021) An insight into the phosphorus distribution in extracellular and intracellular cell of Chlorella vulgaris under mixotrophic cultivation. Algal Res 60:102482

    Article  Google Scholar 

  • Yao B, Xi B, Hu C, Huo S, Su J, Liu H (2011) A model and experimental study of phosphate uptake kinetics in algae: considering surface adsorption and P-stress. J Environ Sci 23:189–198

    Article  CAS  Google Scholar 

  • Zhang H-L, Fang W, Wang Y-P, Sheng G-P, Zeng RJ, Li W-W, Yu H-Q (2013) Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol 47:11482–11489

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Marcus AK, Straka L, Eustance E, Lai YS, Xia S, Rittmann BE (2019) Uptake of phosphate by Synechocystis sp. PCC 6803 in dark conditions: removal driving force and modeling. Chemosphere 218:147–156

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Nguyen BT, Zhou C, Straka L, Lai YS, Xia S, Rittmann BE (2017) The distribution of phosphorus and its transformations during batch growth of Synechocystis. Water Res 122:355–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The TEM studies were carried out at the Shared Research Facility “Electron microscopy in life sciences” at Moscow State University (Unique Equipment “Three-dimensional electron microscopy and spectroscopy”). Photosynthetic pigment assays was done using the Shared Research Facility “Phototrophic Organism Phenotyping.” The taxonomical assignment was done with the support of the scientific and educational school of LMSU “Molecular technologies of living systems and synthetic biology”.

Funding

This work was supported by the Russian Science Foundation (Grant Number 20–64-46018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei E. Solovchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobakova, E.S., Selyakh, I.O., Semenova, L.R. et al. Hints for understanding microalgal phosphate-resilience from Micractinium simplicissimum IPPAS C-2056 (Trebouxiophyceae) isolated from a phosphorus-polluted site. J Appl Phycol 34, 2409–2422 (2022). https://doi.org/10.1007/s10811-022-02812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02812-0

Keywords

Navigation