Skip to main content
Log in

Investigations of solid culture–induced acquisition of desiccation tolerance in liquid suspension culture of Nostoc flagelliforme

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Nostoc flagelliforme is an endangered desiccation-tolerant cyanobacterium with dietary and herbal values. Enough availability of this biotic resource in food industry or for ecological management will come from the mass cultivation of its liquid suspension culture. Nostoc flagelliforme is sensitive to desiccation stress when cultivated as a cell suspension in liquid medium. In this study, we describe the desiccation tolerance acquisition of the liquid suspension culture on agar plates through slow drying treatment and investigate biochemical, proteomic, and ultrastructural changes of cells upon the drying induction. During the 16-day drying treatment, the cell suspension–derived solid cultures were maintained with 90 ~ 94% water content and the fresh weight increased nearly ninefold. Biochemical analysis showed that the biosynthesis of extracellular components, exopolysaccharide and scytonemin, was significantly increased in the solid cultures during the drying process. WspA protein, which can be secreted into the extracellular matrix, was also greatly induced. The contents of the compatible solutes trehalose and sucrose were not increased, but the content of trehalose maintained a high basal level. Proteomic analysis identified some highly upregulated proteins that are potentially crucial for desiccation tolerance, including WspA protein and Mn-containing catalase. Also, the biological processes regarding lipid or pigment metabolisms and the pathways regarding fructose and mannose metabolism and the biosynthesis of secondary metabolites were found among the most affected events during the drying process. Ultrastructural observation suggested that the structural modulation of the exopolysaccharide matrix occurred. In addition, the monosaccharide composition of exopolysaccharides was found to be specific for this liquid suspension culture or its derived solid culture. In general, this study provides insights into the mechanisms of desiccation tolerance acquisition in liquid suspension culture of N. flagelliforme and also proposes a new solution for developing desiccation-tolerant N. flagelliforme resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Adessi A, Cruz de Carvalho R, De Phillippis R, Branquinho C, Marques da Silva J (2018) Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol Biochem 116:67–69

    CAS  Google Scholar 

  • Ai YF, Yang YW, Qiu BS, Gao X (2014) Unique WSPA protein from terrestrial macroscopic cyanobacteria can confer resistance to osmotic stress in transgenic plants. World J Microbiol Biotech 30:2361–2369

    CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couradeau E, Karaoz U, Lim HC, Nunes da Rocha U, Northen T, Brodie E, Garcia-Pichel F (2016) Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun 7:10373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Ann Rev Physiol 54:579–599

  • Cui LJ, Xu HY, Zhu ZX, Gao X (2017) The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biol Open 6:1329–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai YJ, Li J, Wei SM, Chen N, Song YJ (2013) Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture. J Microbiol Biotechnol 23:534–538

    CAS  PubMed  Google Scholar 

  • DuBois MK, Gilles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Feng YN, Zhang ZC, Feng JL, Qiu BS (2012) Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme. Appl Environ Microbiol 78:7075–7081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira D, Garcia-Pichel F (2016) Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133. Front Microbiol 7:735

    PubMed  PubMed Central  Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455

    CAS  PubMed  Google Scholar 

  • Gao KS (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10:37–49

    Google Scholar 

  • Gao KS, Ye CP (2003) Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae), under aquatic conditions. J Phycol 39:617–623

    Google Scholar 

  • Gao L, Ge H, Huang X, Liu K, Zhang Y, Xu W, Wang Y (2015a) Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs). Mol Cell Proteom 14:340–353

    CAS  Google Scholar 

  • Gao X (2017) Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb Ecol 73:255–258

    CAS  PubMed  Google Scholar 

  • Gao X, Liu B, Ji BY (2019) Profiling of small molecular metabolites in Nostoc flagelliforme during periodic desiccation. Mar Drugs 17:298

    CAS  PubMed Central  Google Scholar 

  • Gao K, Qiu B, Xia J, Yu A (1998) Light dependency of the photosynthetic recovery of Nostoc flagelliforme. J Appl Phycol 10:51–53

    Google Scholar 

  • Gao X, Yang YW, Ai YF, Luo HY, Qiu BS (2014) Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers. Food Chem 143:307–312

    CAS  PubMed  Google Scholar 

  • Gao X, Yang YW, Cui LJ, Zhou DB, Qiu BS (2015b) Preparation of desiccation-tolerant aquatic-living Nostoc flagelliforme (Cyanophyceae) for potential ecological application. Microb Biotechnol 8:1006–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhu Z, Xu H, Liu L, An J, Ji B, Ye S (2021) Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environ Microbiol 23:713–727

    CAS  PubMed  Google Scholar 

  • García AH (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36:939–950

    PubMed  Google Scholar 

  • Gorelova OA, Baulina OI (2009) Ultrastructure of Nostoc sp. f. blasis cell forms in persisting populations. Microbiology 78:609–617

    CAS  Google Scholar 

  • Han PP, Shen SG, Guo RJ, Zhao DX, Lin YH, Jia SR, Yan RR, Wu YK (2019) ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium Nostoc flagelliforme. J Agr Food Chem 67:2235–2244

    CAS  Google Scholar 

  • He P, Zhang A, Zhang F, Linhardt RJ, Sun P (2016) Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia. Carbohyd Polym 152:222–230

    CAS  Google Scholar 

  • Huang Z, Liu Y, Paulsen BS, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968

    CAS  Google Scholar 

  • Kehr JC, Dittmann E (2015) Biosynthesis and function of extracellular glycans in cyanobacteria. Life 5:164–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klähn K, Hagemann M (2011) Compatible solute synthesis in cyanobacteria. Environ Microbiol 13:551–562

    PubMed  Google Scholar 

  • Leslie SB, Israeli EB, Lighthart JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Liu W, Gao K (2013) Effects of temperature, pH, and UV radiation on alkaline phosphatase activity in the terrestrial cyanobacterium Nostoc flagelliforme. J Appl Phycol 25:1031–1038

    CAS  Google Scholar 

  • Liang W, Zhou Y, Wang L, You X, Chen W (2012) Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration. J Proteom 75:5604–5627

    CAS  Google Scholar 

  • Liu W, Cui L, Xu H, Zhu Z, Gao X (2017) Flexibility–rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl Environ Microbiol 83:e01619-17

  • Liu XJ, Jiang Y, Chen F (2005) Fatty acid profile of the edible filamentous cyanobacterium Nostoc flagelliforme at different temperatures and developmental stages in liquid suspension culture. Process Biochem 40:371–377

    CAS  Google Scholar 

  • Liu Y, Yu L, Ke W, Gao X, Qiu B (2010) Photosynthetic recovery of Nostoc flagelliforme (Cyanophyceae) upon rehydration after 2 years and 8 years dry storage. Phycologia 49:429–437

    CAS  Google Scholar 

  • Matsui K, Nazifi E, Hirai Y, Wada N, Matsugo S, Sakamoto T (2012) The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity. J Gen Appl Microbiol 58:137–144

    CAS  PubMed  Google Scholar 

  • Morsy FM, Kuzuha S, Takani Y, Sakamoto T (2008) Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J Gen Appl Microbiol 54:243–252

    CAS  PubMed  Google Scholar 

  • Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, Keren N, Hagemann M, Pade N, Kaplan A (2017) What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol 19:535–550

    CAS  PubMed  Google Scholar 

  • Pereira S, Mota R, Vieira C, Vieira J, Tamagnini P (2015) Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep 5:14835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    CAS  PubMed  Google Scholar 

  • Prágai Z, Harwood CR (2002) Regulatory interactions between the Pho and rB-dependent general stress regulons of Bacillus subtilis. Microbiology 148:1593–1602

    PubMed  Google Scholar 

  • Qiu B, Zhang A, Liu Z (2004) Oxidative stress in Nostoc flagelliforme subjected to desiccation and effects of exogenous oxidants on its photosynthetic recovery. J Appl Phycol 15:445–450

    Google Scholar 

  • Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, Hegamann M, Koch M, Shotland Y, Kaplan A (2016) Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: the photosynthetic aspect. Biochim Biophys Acta 1857:715–722

    CAS  PubMed  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    PubMed  PubMed Central  Google Scholar 

  • Shaw E, Hill DR, Brittain N, Wright DJ, Täuber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69:5679–5684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Jia S, Wu Y, Yan R, Lin Y, Zhao D, Han P (2018) Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydr Polym 198:426–433

    CAS  PubMed  Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182:189–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SC, Sinha RP, Häder DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Soule T, Shipe D, Lothamer J (2016) Extracellular polysaccharide production in a scytonemin-deficient mutant of Nostoc punctiforme under UVA and oxidative stress. Curr Microbiol 73:455–462

    CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoscheck CM (1990) Quantitation of Protein. Meth Enzymol 182:50–68

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton DA (2015) Anhydrobiosis. Curr Biol 25:R1114–R1116

    CAS  PubMed  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281

    CAS  PubMed  Google Scholar 

  • Wu J, Gao F, Xu T, Deng X, Wang C, Yang X, Hu Z, Long Y, He X, Liang G, Ren D, Dai T (2018) MiR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling. Int J Oncol 52:1427–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Yu K, Li L, Wang L, Liang W (2021) Enhancement of exopolysaccharides production and reactive oxygen species level of Nostoc flagelliforme in response to dehydration. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13051-0

    Article  Google Scholar 

  • Wu SX, He L, Shen RR, Zhang X, Wang QX (2011) Molecular cloning of maltooligosyltrehalose trehalohydrolase gene from Nostoc flagelliforme and trehalose-related response to stresses. J Microbiol Biotechnol 21:830–837

    CAS  PubMed  Google Scholar 

  • Wu SX, Shen RR, Zhang X, Wang QX (2010) Molecular cloning and characterization of maltooligosyltrehalose synthase gene from Nostoc flagelliforme. J Microbiol Biotechnol 20:579–586

    CAS  PubMed  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie JH, Shen MY, Nie SP, Liu X, Zhang H, Xie MY (2013) Analysis of monosaccharide composition of Cyclocarya paliurus polysaccharide with anion exchange chromatography. Carbohydr Polym 98:976–981

    CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    PubMed  PubMed Central  Google Scholar 

  • Yu H (2012) Effect of mixed carbon substrate on exopolysaccharide production of cyanobacterium Nostoc flagelliforme in mixotrophic cultures. J Appl Phycol 24:669–673

    CAS  Google Scholar 

  • Yu H, Liu R (2013) Effect of UV-B radiation on the synthesis of UV-absorbing compounds in a terrestrial cyanobacterium, Nostoc flagelliforme. J Appl Phycol 25:1441–1446

    CAS  Google Scholar 

  • Zayed G, Roos YH (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem 39:1081–1086

    CAS  Google Scholar 

  • Zhao XM, Bi YH, Chen L, Hu S, Hu ZY (2008) Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme to rehydration at different temperature. J Arid Environ 72:370–377

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (No. 31670104) and the Key Project of Natural Science of Shaanxi Province, China (No. 2020JZ-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, XL., Gao, X., Liu, W. et al. Investigations of solid culture–induced acquisition of desiccation tolerance in liquid suspension culture of Nostoc flagelliforme. J Appl Phycol 33, 3657–3669 (2021). https://doi.org/10.1007/s10811-021-02550-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02550-9

Keywords

Navigation