Skip to main content
Log in

Screening, acclimation and ammonia tolerance of microalgae grown in food waste digestate

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Anaerobic digestate of food waste as a waste product of anaerobic digestion contains a significant amount of nutrients making its direct disposal prohibitive due to environmental regulations. However, the nutrients in this waste are a valuable feedstock for waste-to-product endeavours such as microalgae cultivation coupled to the treatment of the digestate. A limitation to this path is the high toxic concentration of ammonia nitrogen in the digestate which limits microalgae growth, leading to the requirement for significant dilution before use. This study focused on the bioprospecting and sourcing of species capable of sustained growth in very high concentrations of ammonia nitrogen. Ten local strains of microalgae were isolated, comprising mainly of unicellular species, a colonial species, and a filamentous species. Three unicellular species were chosen (Chlorella sp., MUR 271; Scenedesmus obliquus (Tetradesmus obliquus), MUR 272; and Oocystis sp., MUR 273) and screened alongside previously isolated strains (Scenedesmus quadricauda, MUR 268; Chlorella sp., MUR 269; and Scenedesmus dimorphus (Tetradesmus dimorphus) MUR 270) which had undergone long-term acclimation in digestate. The most tolerant of the newly isolated strains was MUR 273 (Oocystis sp.), capable of proliferation in up to 600 mg L−1 NH3-N concentration in digestate. The maximum specific growth rate, μmax, of MUR 273 was 0.36 ± 0.01 day−1 at 150 mg L−1 NH3-N. The results indicate that MUR 273 displayed tolerance levels similar to that obtained with MUR 268 which had previously undergone long-term acclimation in digestate and could potentially be used in the treatment and valorization of the anaerobic digestate of food waste with significantly less dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu Hajar HA, Guy Riefler R, Stuart BJ (2016) Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans. Environ Eng Res 21:265–275

    Google Scholar 

  • Álvarez X, Otero A (2020) Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413. J Appl Phycol https://doi.org/10.1007/s10811-020-02175-4

  • Ajala SO, Alexander ML (2020) Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng 11:311–326

    CAS  Google Scholar 

  • Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 83–100

  • Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218–226

    Google Scholar 

  • Bellinger EG, Sigee DC (2010) Freshwater algae- identification and use as bioindicators. John Wiley and Sons, Ltd, West Sussex

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka MA (2018) The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. J Appl Phycol 30:2815–2825

    Google Scholar 

  • Brewin RJW, Morán XAG, Raitsos DE, Gittings JA, Calleja ML, Viegas M, Ansari MI, al-Otaibi N, Huete-Stauffer TM, Hoteit I (2019) Factors regulating the relationship between total and size-fractionated chlorophyll a in coastal waters of the Red Sea. Front Microbiol 10:1–16

    Google Scholar 

  • Cheng J, Ye Q, Xu J, Yang Z, Zhou J, Cen K (2016) Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresour Technol 216:273–279

    CAS  PubMed  Google Scholar 

  • Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: part I. methods and culture media. J Ecol 30:284

    CAS  Google Scholar 

  • Chuka-ogwude D, Ogbonna J, Moheimani NR (2020) A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Res 47:101841

    Google Scholar 

  • Cuetos MJ, Gómez X, Otero M, Morán A (2008) Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem Eng J 40:99–106

    CAS  Google Scholar 

  • Curry N, Pillay P (2012) Biogas prediction and design of a food waste to energy system for the urban environment. Renew Energy 41:200–209

    CAS  Google Scholar 

  • de la Noüe J, Cloutier-Mantha L, Walsh P, Picard G (1984) Influence of agitation and aeration modes on biomass production by Oocystis sp. grown on wastewaters. Biomass 4:43–58

    Google Scholar 

  • Dębowski M, Szwaja S, Zieliński M, Kisielewska M, Stańczyk-Mazanek E (2017) The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production. Waste Biomass Valoriz 8:1153–1161

    Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Factories 12:1–17

    Google Scholar 

  • Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K (2008) Ammonia triggers photodamage of photosystem II in the Cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 147:206–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste – extent, causes and prevention. FAO, Rome

  • Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14

    Google Scholar 

  • Gao QT, Tam NFY (2011) Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere 82:346–354

    CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Ketchum BH, Redfield AC (1949) Some physical and chemical characteristics of algae growth in mass culture. J Cell Comp Physiol 33:281–299

    CAS  PubMed  Google Scholar 

  • Koutra E, Grammatikopoulos G, Kornaros M (2017) Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production. Bioresour Technol 224:473–480

    CAS  PubMed  Google Scholar 

  • Krauss RW, Thomas WH (1954) The growth and inorganic nutrition of Scenedesmus Obliquus in mass culture. Plant Physiol 29:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krustok I, Diaz JG, Odlare M, Nehrenheim E (2015) Algae biomass cultivation in nitrogen rich biogas digestate. Water Sci Technol 72:1723–1729

    CAS  PubMed  Google Scholar 

  • Lange C (2017) A techno-economic analysis of the usage of macroalgae culture for the post treatment of anaerobic digestion piggery effluent. Thesis, Murdoch University

  • Lee DH, Feist AM, Barrett CL, Palsson B (2011) Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. PLoS One 6:1–8

    Google Scholar 

  • Lei X, Sugiura N, Feng C, Maekawa T (2007) Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J Hazard Mater 145:391–397

    CAS  PubMed  Google Scholar 

  • McDaniel HR, Middlebrook JB, Bowman RO (1962) Isolation of pure cultures of algae from contaminated cultures. Appl Microbiol 10:223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–283

    Google Scholar 

  • Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149

    CAS  PubMed  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis : a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    CAS  PubMed  Google Scholar 

  • Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268–276

    Google Scholar 

  • Nwoba EG, Mickan BS, Moheimani NR (2019) Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol 31:3545–3556

    CAS  Google Scholar 

  • Park J, Jin HF, Lim BR, Park KY, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    CAS  PubMed  Google Scholar 

  • Raeisossadati M, Moheimani NR, Parlevliet D (2019a) Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renew Sust Energ Rev 101:47–59

    Google Scholar 

  • Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019b) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319

    CAS  Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia AS (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12:1443–1460

    CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Salomon E, Bar-Eyal L, Sharon S, Keren N (2013) Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochim Biophys Acta Bioenerg 1827:340–347

    CAS  Google Scholar 

  • Tapia C, Fermoso FG, Serrano A, Torres Á, Jeison D, Rivas M, Ruiz G, Vílchez C, Cuaresma M (2019) Potential of a local microalgal strain isolated from anaerobic digester effluents for nutrient removal. J Appl Phycol 31:345–353

    CAS  Google Scholar 

  • Tao R, Kinnunen V, Praveenkumar R, Lakaniemi A-M, Rintala JA (2017) Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J Appl Phycol 29:2845–2856

    CAS  Google Scholar 

  • Torres Franco AF, da Encarnação AS, Passos F, de Lemos Chernicharo CA, Mota Filho CR, Cunha Figueredo C (2018) Treatment of food waste digestate using microalgae-based systems with low-intensity light-emitting diodes. Water Sci Technol 78:225–234

    PubMed  Google Scholar 

  • Vadiveloo A, Matos AP, Chaudry S, Bahri PA, Miheimani NR (2020) Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). J CO2 Util 38:273–281

    CAS  Google Scholar 

  • Vadiveloo A, Nwoba EG, Moheimani NR (2019) Viability of combining microalgae and macroalgae cultures for treating anaerobically digested piggery effluent. J Environ Sci 82:132–144

    Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    CAS  PubMed  Google Scholar 

  • Wang M, Yang Y, Chen Z, Chen Y, Wen Y, Chen B (2016) Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour Technol 222:130–138

    CAS  PubMed  Google Scholar 

  • Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34:264–275

    CAS  PubMed  Google Scholar 

  • Zhao L-S, Li K, Wang Q-M, Song X-Y, Su H-N, Xie B-B, Zhang X-Y, Huang F, Chen X-L, Zhou B-C, Zhang Y-Z (2017) Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci Rep 7:8542

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by Murdoch University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuka-ogwude, D., Ogbonna, J., Borowitzka, M.A. et al. Screening, acclimation and ammonia tolerance of microalgae grown in food waste digestate. J Appl Phycol 32, 3775–3785 (2020). https://doi.org/10.1007/s10811-020-02276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02276-0

Keywords

Navigation