Skip to main content
Log in

Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae readily develop tolerance against environmental pollutants and are also capable of utilizing heavy metals in their metabolic activities. Microalgae-based heavy metal removal provides an eco-friendly, cost-effective technology to treat wastewater. In this study, a strain of the green alga Chlorococcum aquaticum, isolated from water polluted with Pb2+, was selected for bioremediation of Pb2+ in aqueous solutions. Chlorococcus aquaticum showed a high level of tolerance toward Pb2+ with an LC50 of 100 mg L−1. To assess the efficacy and practicality of the bioremediation process, adsorption isotherms and kinetic models were developed. The best-fitted adsorption model was Freundlich isotherm with the adsorption constant (KF) = 2.18 mg g−1 and n = 1.01, suggesting a multilayer adsorption to heterogeneous surfaces. The kinetic studies revealed that the interaction of Pb2+ with C. aquaticum obeys pseudo second-order kinetics with the rate constant (k) = 1.21 × 10−5 g mg−1 min−1 and the amounts of Pb2+ adsorbed per gram of adsorbent at equilibrium (qe) = 500 mg g−1, indicating that the rate determining step involves a chemical reaction mechanism. Chlorococcum aquaticum showed a high tolerance toward Pb2+, high adsorption capacity and a moderate adsorption rate. Thus, growing C. aquaticum can be identified as a potential environmentally friendly and low-cost sorbent to remove a wide range of Pb2+concentrations from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo-Shady AM, Mohamed YA, Lasheen T (1993) Chemical composition of the cell wall in some green algae species. Biol Plant 35:629–632

    CAS  Google Scholar 

  • Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley Interscience, New York

    Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Research J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  PubMed  Google Scholar 

  • Akhtar N, Iqbal M, Zafar SI, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci 20:231–239

    CAS  Google Scholar 

  • Aksu Z, Kutsal T (2007) A bioseparation process for removing lead(II) ions from waste water by using C. vulgaris. J Chem Technol Biotechnol 52:109–118

    Google Scholar 

  • Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383

    CAS  PubMed  Google Scholar 

  • Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309

    CAS  Google Scholar 

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302

    CAS  Google Scholar 

  • Areco MM, dos Santos Afonso M (2010) Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surfaces B 81:620–628

    CAS  Google Scholar 

  • Arias AH, Souissi A, Glippa O, Roussin M, Dumoulin D, Net S, Ouddane B, Souissi S (2016) Removal and biodegradation of phenanthrene, fluoranthene and pyrene by the marine algae Rhodomonas baltica enriched from north atlantic coasts. Bull Environ Contam Toxicol 98:392–399

    PubMed  Google Scholar 

  • Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 9:660–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chemother 2017:1–11

    Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59

    CAS  Google Scholar 

  • Balbuena PB, Gubbins KE (1993) Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir 9:1801–1814

    CAS  Google Scholar 

  • Borah D, Kennedy B, Gopalakrishnan S, Chithonirai A, Nooruddin T (2020) Bioremediation and biomass production with the green microalga Chlorococcum humicola and textile mill effluent (TE). Proc Natl Acad Sci India Sect B 90:415–423

    CAS  Google Scholar 

  • Bouzit L, Jbari N, El Yousfi F, Slimani Alaoui N, Chaik A, Stitou M (2018) Adsorption of Fe3+ by a living microalgae biomass of Scenedesmus obliquus. Mediterr J Chem 7:156–163

    CAS  Google Scholar 

  • Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol 103:489–493

    CAS  PubMed  Google Scholar 

  • Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem Eng 24:62–70

    Google Scholar 

  • Cai XH, Traina ST, Logan TJ, Gustafson T, Sayre RT (1995) Applications of eukaryotic algae for the removal of heavy metals from water. Mol Mar Biol Biotechnol 4:338–344

    CAS  Google Scholar 

  • Çetinkaya Dönmez G, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Google Scholar 

  • Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98:2897–2904

    CAS  PubMed  Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, St. John MS, Green FB, Oswald WJ (1996) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33:191–198

    CAS  Google Scholar 

  • Craggs R, Park J, Heubeck S, Sutherland D (2014) High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. N Z J Bot 52:60–73

    Google Scholar 

  • Craggs R, Park J, Sutherland D, Heubeck S (2015) Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems. J Appl Phycol 27:1913–1922

    CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    CAS  Google Scholar 

  • Cruz CCV, da Costa ACA, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour Technol 91:249–257

    CAS  PubMed  Google Scholar 

  • Dahiya S, Tripathi RM, Hegde AG (2008) Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. J Hazard Mater 150:376–386

    CAS  PubMed  Google Scholar 

  • Dahmen-Ben Moussa I, Athmouni K, Chtourou H, Ayadi H, Sayadi S, Dhouib A (2018) Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution. J Appl Phycol 30:931–941

    CAS  Google Scholar 

  • Dean JG, Bosqui FL, Lanouette KH (1972) Removing heavy metals from waste water. Environ Sci Technol 6:518–522

    CAS  Google Scholar 

  • Debelius B, Forja JM, DelValls Á, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513

    CAS  PubMed  Google Scholar 

  • Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review J Phys Chem Ref Data 30:187–439

    CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2006) Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12:267–277

    CAS  Google Scholar 

  • Dönmez G, Aksu Z (1999) The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem 35:135–142

    Google Scholar 

  • El-Khaiary MI (2008) Least-squares regression of adsorption equilibrium data: comparing the options. J Hazard Mater 158:73–87

    CAS  PubMed  Google Scholar 

  • Elmorsi TM, Mohamed ZH, Shopak W, Ismaiel AM (2014) Kinetic and equilibrium isotherms studies of adsorption of Pb(II) from water onto natural adsorbent. J Environ Prot 05:1667–1681

    CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    CAS  PubMed  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055

    Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    CAS  PubMed  Google Scholar 

  • Harish SS, Kumar D, Vaijapurkar SG (2008) A new chlorophycean nickel hyperaccumulator. Bioresour Technol 99:3930–3934

    CAS  PubMed  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    CAS  PubMed  Google Scholar 

  • Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38:1047–1061

    CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763

    CAS  Google Scholar 

  • Høibye L, Clauson-Kaas J, Wenzel H, Larsen HF, Jacobsen BN, Dalgaard O (2008) Sustainability assessment of advanced wastewater treatment technologies. Water Sci Technol 58:450

    Google Scholar 

  • Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies on the accumulation of heavy metal elements in biological systems – XIX. Accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12:90–96

    CAS  Google Scholar 

  • Huang C-N, Cornejo MJ, Bush DS, Jones RL (1986) Estimating viability of plant protoplasts using double and single staining. Protoplasma 135:80–87

    Google Scholar 

  • Igwe JC, Abia AA (2007) Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron J Biotechnol 10:536–548

    Google Scholar 

  • Israel U, Eduok UM (2012) Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust. Sch Res Libr Arch Appl Sci Res 4:809–819

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    CAS  Google Scholar 

  • Kottangodan N, Das C, Ram A, Meena RM, Ramaiah N (2019) Phycoremediation of hazardous mixed industrial effluent by a marine strain of Phormidium sp. CLEAN – Soil Air Water 47:1800264

    Google Scholar 

  • Kumar A, Kumar A, M.M.S. C-P, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17:2179

    CAS  PubMed Central  Google Scholar 

  • Küpper H (2017) Lead toxicity in plants. In: Siegel A, Siegel H, Siegel RKO (eds) Lead: Its effects on environment and health. Walter de Gruyter, Berlin, pp 491–500

    Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    CAS  PubMed  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms — processes and importance for soil systems. Earth-Science Rev 51:1–31

    CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    CAS  PubMed  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99:1509–1517

    CAS  PubMed  Google Scholar 

  • Lv J, Wang X, Feng J, Liu Q, Nan F, Liu X, Xie S (2019) Biomass production and nutrients removal from non-sterile municipal wastewater and cattle farm wastewater inoculated with Chlorococcum sp. GD J Chem Technol Biotechnol 94:2580–2588

    CAS  Google Scholar 

  • Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Arch Environ Contam Toxicol 27:454–458

    CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    CAS  PubMed  Google Scholar 

  • Mang KC, Ntushelo K (2020) Algae-based heavy metal remediation in acid mine drainage: a review. Appl Ecol Environ Res 18:2499–2512

    Google Scholar 

  • Moh M (2004) Toxicity and bioaccumulation of lead in Chlorella and Dunaliella. J Coast Dev 8:27–33

    Google Scholar 

  • Nadeem R, Hanif MA, Shaheen F, Perveen S, Zafar MN, Iqbal T (2008) Physical and chemical modification of distillery sludge for Pb(II) biosorption. J Hazard Mater 150:335–342

    CAS  PubMed  Google Scholar 

  • Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    CAS  PubMed  Google Scholar 

  • Nakajima A, Horikoshi T, Sakaguchi T (1979a) Studies on the accumulation of heavy metal elements in biological systems. X. Uptake of copper ion by green microalgae. Agric Biol Chem 43:1455–1460

    CAS  Google Scholar 

  • Nakajima A, Horikoshi T, Sakaguchi T (1979b) Uptake of Manganese Ion by Chlorella regularis. Agric Biol Chem 43:1461–1466

    CAS  Google Scholar 

  • Nirmal Kumar JI, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33:27–31

    Google Scholar 

  • Nourbakhsh M, Sag Y, Özer D, Aksu Z, Kutsal T, Çaglar A (1994) A comparative study of various biosorbents for removal of chromium(VI) ions from industrial waste waters. Process Biochem 29:1–5

    CAS  Google Scholar 

  • Olguín E (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    PubMed  Google Scholar 

  • Özer A, Özer D, Ekiz HI (1999) Application of Freundlich and Langmuir models to multistage purification process to remove heavy metal ions by using Schizomeris leibleinii. Process Biochem 34:919–927

    Google Scholar 

  • Pérez-Rama M (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84:265–270

    PubMed  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and prospectives. J Biochem Technol 3:299–304

    CAS  Google Scholar 

  • Qiu H, Lv L, Pan B, Zhang Q, Zhang W, Zhang Q (2009) Critical review in adsorption kinetic models. J Zhejiang Univ A 10:716–724

    CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Technol 2:175–184

    Google Scholar 

  • Ravindran B, Gupta S, Cho W-M, Kim J, Lee S, Jeong K-H, Lee D, Choi H-C (2016) Microalgae potential and multiple roles—current progress and future prospects—an overview. Sustainability 8:1215

    Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    CAS  Google Scholar 

  • Raymond Sunday E (2018) Phycoremediation: an eco-solution to environmental protection and sustainable remediation. J Chem Environ Biol Eng 2:5–10

    Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia AS (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12:1443–1460

    CAS  Google Scholar 

  • Roane TM, Pepper IL (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364

    CAS  PubMed  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    CAS  PubMed  Google Scholar 

  • Ruangsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2006) Lead (Pb2+) removal from wastewater by the cyanobacterium Calothrix marchica. Kasetsart J (Nat Sci) 40:784–794

    CAS  Google Scholar 

  • Sakaguchi T, Tsuji T, Nakajima A, Horikoshi T (1979) Accumulation of cadmium by green microalgae. Eur J Appl Microbiol Biotechnol 8:207–215

    CAS  Google Scholar 

  • Sakaguchi T, Nakajima A, Horikoshi T (1981) Studies on the accumulation of heavy metal elements in biological systems. Eur J Appl Microbiol Biotechnol 12:84–89

    CAS  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PLoS One 7:e36470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour Technol 99:1896–1903

    CAS  PubMed  Google Scholar 

  • Schlötterer C, Hauser MT, von Haeseler ATD (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11:513–522

    PubMed  Google Scholar 

  • Schoppelrei JW, Kieke ML, Wang X, Klein MT, Brill TB (1996) Spectroscopy of hydrothermal reactions. 4. Kinetics of urea and guanidinium nitrate at 200−300 °C in a diamond cell, infrared spectroscopy flow reactor. J Phys Chem 100:14343–14351

    CAS  Google Scholar 

  • Singh AK, Rana HK, Yadav RK, Pandey AK (2020) Dual role of microalgae: phycoremediation coupled with biomass generation for biofuel production. In: Upadhyay AK, Singh R, Singh DP (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer Singapore, Singapore, pp 161–178

    Google Scholar 

  • Smart KA, Chambers KM, Lambert I, Jenkins C, Smart CA (1999) Use of methylene violet staining procedures to determine yeast viability and vitality. J Am Soc Brew Chem 57:18–23

    CAS  Google Scholar 

  • Thomas DG, Minj N, Mohan N, Rao H (2016) Cultivation of microalgae in domestic wastewater for biofuel applications – an upstream approach. J Algal Biomass Utln 7:62–70

    Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  • Ting YP, Prince IG, Lawson F (1991) Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi-ion situation. Biotechnol Bioeng 37:445–455

    CAS  PubMed  Google Scholar 

  • Toumi A, Nejmeddine A, El Hamouri B (2000) Heavy metal removal in waste stabilisation ponds and high rate ponds. Water Sci Technol 42:17–21

    CAS  Google Scholar 

  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5:331–349

    CAS  Google Scholar 

  • Valenzuela-espinoza E, Milla R, Nu F (1999) Biomass production and nutrient uptake by Isochrysis aff. galbana (Clone T-ISO) cultured with a low cost alternative to the f/2 medium. Aquac Eng 20:135–147

    Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

    CAS  PubMed  Google Scholar 

  • Von Sperling M (2015) Wastewater characteristics, treatment and disposal. Water Intell Online 6:9781780402086–9781780402086

    Google Scholar 

  • Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    CAS  PubMed  Google Scholar 

  • Winek CL (1976) Tabulation of therapeutic, toxic, and lethal concentrations of drugs and chemicals in blood. Clin Chem 22:832–836

    CAS  PubMed  Google Scholar 

  • Wu F-C, Tseng R-L, Juang R-S (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Google Scholar 

  • Yadav M, Rani K, Chauhan MK, Panwar A, Sandal N (2020) Evaluation of mercury adsorption and removal efficacy of pulverized Chlorella (C. vulgaris). J Appl Phycol 32:1253–1262

    CAS  Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: impacts and remediation. J Environ Manag 250:109557

    CAS  Google Scholar 

Download references

Funding

This work was supported by the University Research Grant (Grant No. URG/2016/50/S), University of Peradeniya, Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Jayasundera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(XLSX 33 kb)

ESM 2

(XLSX 53 kb)

ESM 3

(XLSX 72 kb)

ESM 4

(DOCX 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liyanage, L.M.M., Lakmali, W.G.M., Athukorala, S.N.P. et al. Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions. J Appl Phycol 32, 4069–4080 (2020). https://doi.org/10.1007/s10811-020-02242-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02242-w

Keywords

Navigation