Skip to main content
Log in

The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Practical yields of biogas from the anaerobic digestion of macroalgae and, Sargassum muticum in particular, are substantially below the theoretical maximum. There is considerable conjecture about the reasons for the relatively low practical methane yields from seaweed, and polyphenols are suggested as one of the elements in the low yield of methane from brown seaweeds. However, there appears to be little information on the effect of specific phenolics on defined substrates. This paper examines the effect of some simple phenolic compounds, representative of those reported in S. muticum on methane production from a range of model substrates. Three simple phenolics were selected, gallic acid, epicatechin and phloroglucinol; at four addition levels, 0, 0.5, 3.5 and 7.5% w/w of substrate; for four substrates, a readily digested simple organic substance, glycerol, and three polymers found in seaweed, cellulose, alginic acid and the sodium salt of alginic acid. Alginic acid and its sodium salt were found to be recalcitrant with average methane yields of equivalent to only 23–28% of their theoretical methane potential. Methane yield was further reduced by the presence of high concentrations (7% of substrate equivalent to 17.5 mg L−1) of phloroglucinol and epicatechin. None of the phenolic compounds studied appeared to inhibit the breakdown of the simple and readily digested compound, glycerol. Low methane yield in seaweed may be due to the recalcitrance of complex hydrocolloids and phenolic inhibition of the breakdown of more complex molecules in the initial hydrolysis stage of anaerobic digestion, but further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour Technol 129:92–99

    Article  CAS  PubMed  Google Scholar 

  • Astals S, Musenze RS, Bai X, Tannock S, Tait S, Pratt S, Jensen PD (2015) Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour Technol 181:97–104

    Article  CAS  PubMed  Google Scholar 

  • Balboa E, Moure A, Domínguez H (2015) Valorization of Sargassum muticum biomass according to the biorefinery concept. Mar Drugs 13:3745–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks C, Zhang Y (2010) Optimising inputs and outputs from anaerobic digestion processes—technical report. DEFRA, Southampton

    Google Scholar 

  • Barbot Y, Thomsen C, Thomsen L, Benz R (2015) Anaerobic digestion of Laminaria japonica waste from industrial production residues in laboratory- and pilot-scale. Mar Drugs 13:5947–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbot Y, Al-Ghaili H, Benz R (2016) A review on the valorization of macroalgal wastes for biomethane production. Mar Drugs 14:120

    Article  PubMed Central  Google Scholar 

  • Battista F, Fino D, Ruggeri B (2014) Polyphenols concentration’s effect on the biogas production by wastes derived from olive oil production. Chem Eng Trans 38:373–377

    Google Scholar 

  • Biomara (2014) A short history of seaweed exploitation in the western British Isles http://www.biomara.org/understanding-seaweed/the-importance-of-seaweed-across-the-ages. Searched 27 January 2014

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin

    Google Scholar 

  • Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552

    Article  CAS  Google Scholar 

  • Cave S (2013) Anaerobic digestion across the UK and Europe. Northern Ireland Assembly, Belfast

    Google Scholar 

  • Centre for Process Innovation (CPI) (2016) The SeaGas project. CPI http://seagascouk/ Searched 7 July 2016

  • Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energy Rev 47:427–437

    Article  CAS  Google Scholar 

  • Connan S, Delisle F, Deslandes E, Gall EA (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46

    Article  CAS  Google Scholar 

  • Critchley AT, Farnham WF, Morrell SL (1986) An account of the attempted control of an introduced marine alga, Sargassum muticum, in southern England. Biol Conserv 35:313–332

    Article  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    Article  CAS  PubMed  Google Scholar 

  • Dijk WV, Schoot JRVD (2015) An economic model for offshore cultivation of macroalgae. EnAlgae project, Swansea

    Google Scholar 

  • Discover Tiree (2014) Brown gold. http://wwwisleoftireecom/about-tiree/the-land/ Searched 27 January 2014

  • Farvin KHS, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138:1670–1681

    Article  Google Scholar 

  • Fernando IP, Kim M, Son KT, Jeong Y, Jeon YJ (2016) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food 19:615–628

    Article  PubMed  Google Scholar 

  • Glombitza KW, Forster M, Farnham WF (1982) Antibiotics from algae .25. Polyhydroxyphenyl ethers from the brown alga Sargassum muticum (Yendo) Fensholt Part II. Bot Mar 25:449–453

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Lopez N, Moure A, Dominguez H (2012) Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol 24:1569–1578

    Article  CAS  Google Scholar 

  • Gorham J, Lewey SA (1984) Seasonal changes in the chemical composition of Sargassum muticum. Mar Biol 80:103–107

    Article  CAS  Google Scholar 

  • Heaven S, Milledge JJ, Zhang Y (2011) Comments on ‘anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29:164–167

    Article  CAS  PubMed  Google Scholar 

  • Hierholtzer A, Chatellard L, Kierans M, Akunna JC, Collier PJ (2013) The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J Appl Microbiol 114:964–973

    Article  CAS  PubMed  Google Scholar 

  • Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Jard G, Marfaing H, Carrere H, Delgenes JP, Steyer JP, Dumas C (2013) French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresour Technol 144:492–498

    Article  CAS  PubMed  Google Scholar 

  • Josefsson M, Jansson K (2011) NOBANIS—invasive alien species fact sheet—Sargassum muticum. http://wwwnobanisorg/files/factsheets/Sargassum_muticumpdf Searched 4 April 2014

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Lee JH, Lee W, Ko JY, Kim EA, Kim JS, Heu MS, Kim GH, Jeon YJ (2015) Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol 39:764–772

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D (1998) Biopolymers from renewable resources. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Klejdus B, Plaza M, Šnóblová M, Lojková L (2017) Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic–tandem mass spectrometric determination. J Pharm Biomed Anal 135:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Chang C-F (ed) Carbohydrates—comprehensive studies on glycobiology and glycotechnology. InTech, Rijeka, pp 489–532

    Google Scholar 

  • Langlois J, Sassi JF, Jard G, Steyer JP, Delgenes JP, Helias A (2012) Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioprod Biorefin 6:387–404

    Article  CAS  Google Scholar 

  • Le Lann K, Surget G, Couteau C, Coiffard L, Cérantola S, Gaillard F, Larnicol M, Zubia M, Guérard F, Poupart N, Stiger-Pouvreau V (2016) Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J Appl Phycol 28:3547–3559

    Article  Google Scholar 

  • Lewis J, Salam F, Slack N, Winton M, Hobson L (2011) Product options for the processing of marine macro-algae—summary report. The Crown Estates, Redcar

    Google Scholar 

  • Linville JL, Shen Y, Wu MM, Urgun-Demirtas M (2015) Current state of anaerobic digestion of organic wastes in North America. Curr Sust/Renew Energy Rep 2:136–144

    Article  CAS  Google Scholar 

  • Liu F, Pang SJ, Gao SQ, Shan TF (2013) Intraspecific genetic analysis, gamete release performance, and growth of Sargassum muticum (Fucales, Phaeophyta) from China. Chin J Ocean Limnol 31:1268–1275

    Article  CAS  Google Scholar 

  • López A, Rico M, Rivero A, Suárez de Tangil M (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109

    Article  Google Scholar 

  • Lou XF, Nair J, Ho G (2013) Potential for energy generation from anaerobic digestion of food waste in Australia. Waste Manage Res 31:283–294

    Article  Google Scholar 

  • Mayfield SP (2015) Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report. Cal-CAB San Diego

  • Menetrez M (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ, Harvey PJ (2016a) Ensilage and anaerobic digestion of Sargassum muticum. J Appl Phycol 28:3021–3030

    Article  CAS  Google Scholar 

  • Milledge JJ, Harvey PJ (2016b) Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biotechnol 91:2221–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milledge JJ, Heaven S (2014) Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol 13:301–320

    Article  CAS  Google Scholar 

  • Milledge JJ, Smith B, Dyer P, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222

    Article  CAS  Google Scholar 

  • Milledge JJ, Nielsen BV, Bailey D (2015a) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Rev Environ Sci Biotechnol 15:67–88

    Article  Google Scholar 

  • Milledge JJ, Staple A, Harvey P (2015b) Slow pyrolysis as a method for the destruction of Japanese Wireweed, Sargassum muticum. Environ Nat Resour Res 5:28–36

    Google Scholar 

  • Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9:347–357

    Article  CAS  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951

    Article  CAS  PubMed  Google Scholar 

  • Montero L, Sánchez-Camargo AP, García-Cañas V, Tanniou A, Stiger-Pouvreau V, Russo M, Rastrelli L, Cifuentes A, Herrero M, Ibáñez E (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chromatogr A 1428:115–125

    Article  CAS  PubMed  Google Scholar 

  • Moorthi PV, Balasubramanian C (2015) Antimicrobial properties of marine seaweed, Sargassum muticum against human pathogens. J Coast Life Med 3:122–125

    Google Scholar 

  • Mousa L, Forster CF (1999) The use of trace organics in anaerobic digestion. Process Saf Environ Prot 77:37–42

    Article  CAS  Google Scholar 

  • Nallathambi Gunaseelan V (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  Google Scholar 

  • Nguyen H, Heaven S, Banks C (2014) Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam. Int J Energy Environ Eng 5:365–374

    Article  CAS  Google Scholar 

  • Oliveira JV, Alves MM, Costa JC (2015) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485

    Article  CAS  PubMed  Google Scholar 

  • Østgaard K, Indergaard M, Markussen S, Knutsen SH, Jensen A (1993) Carbohydrate degradation and methane production during fermentation of Laminaria saccharina (Laminariales, Phaeophyceae). J Appl Phycol 5:333–342

    Article  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52

    Article  PubMed Central  Google Scholar 

  • Rattaya S, Benjakul S, Prodpran T (2015) Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. Int Aquat Res 7:1–16

    Article  Google Scholar 

  • Rehm BHA (ed) (2009) Alginates: biology and applications. Microbiology Monographs, vol 13. Springer, Heidelberg

    Google Scholar 

  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TAP, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes AMP, Duarte AC (2015) Chemical composition of red, brown and green macroalgae from Buarcos Bay in Central West Coast of Portugal. Food Chem 183:197–207

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Bernaldo de Quirós A, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638

    Article  Google Scholar 

  • Salmeán AA, Duffieux D, Harholt J, Qin F, Michel G, Czjzek M, Willats WGT, Hervé C (2017) Insoluble (1 → 3), (1 → 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci Rep 7:2880

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Camargo AD, Montero L, Stiger-Pouvreau V, Tanniou A, Cifuentes A, Herrero M, Ibanez E (2016) Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem 192:67–74

    Article  CAS  Google Scholar 

  • Savithramma N, Linga Rao M, Venkateswarlu P (2014) Isolation and identification of phenolic compounds from Boswellia ovalifoliolata Bal. & Henry and their free radical scavenger activity. Int J Drug Deliv Technol 4:14–21

    Google Scholar 

  • Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14:81–104

    Article  PubMed Central  Google Scholar 

  • Soto M, Falqué E, Domínguez H (2015a) Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2:259–276

    Article  CAS  Google Scholar 

  • Soto M, Vazquez MA, de Vega A, Vilarino JM, Fernandez G, de Vicente ME (2015b) Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour Technol 189:53–61

    Article  CAS  PubMed  Google Scholar 

  • Sutherland A, Varela J (2014) Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. BMC Biotechnol 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates. J Am Chem Soc 55:2028–2036

    Article  CAS  Google Scholar 

  • Tabassum MR, Xia A, Murphy JD (2016) Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Bioresour Technol 216:219–226

    Article  CAS  PubMed  Google Scholar 

  • Tanniou A, Esteban SL, Vandajon L, Ibnez E, mendiola JA, Cerantola S, Kervarec N, La Barre S, Marchal L, Stiger-Pouvreau V (2013) Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 104:44–52

    Article  Google Scholar 

  • Tanniou A, Vandanjon L, Incera M, Serrano Leon E, Husa V, Le Grand J, Nicolas J-L, Poupart N, Kervarec N, Engelen A, Walsh R, Guerard F, Bourgougnon N, Stiger-Pouvreau V (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26:1215–1230

    CAS  Google Scholar 

  • Tedesco S, Stokes J (2017) Valorisation to biogas of macroalgal waste streams: a circular approach to bioproducts and bioenergy in Ireland. Chem Zvesti 71:721–728

    CAS  PubMed  Google Scholar 

  • Tiwari B, Troy D (eds) (2015) Seaweed sustainability: food and non-food applications, 1st edn. Academic Press, Amsterdam

    Google Scholar 

  • Viana MB, Freitas AV, Leitão RC, Pinto GAS, Santaella ST (2012) Anaerobic digestion of crude glycerol: a review. Environ Technol Rev 1:81–92

    Article  CAS  Google Scholar 

  • Ward AJ, Lewis DM, Green B (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wikandari R, Sari NK, A'Yun Q, Millati R, Cahyanto MN, Niklasson C, Taherzadeh MJ (2015) Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion. Appl Biochem Biotechnol 175:1651–1663

    Article  CAS  PubMed  Google Scholar 

  • Yoshie Y, Wang W, Petillo D, Suzuki T (2000) Distribution of catechins in Japanese seaweeds. Fish Sci 66:998–1000

    Article  CAS  Google Scholar 

  • Zhao FJ, Liu FL, Liu JD, Ang PO, Duan DL (2008) Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. J Appl Phycol 20:191–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the assistance of colleagues at the University of Greenwich, and Smurfit Kappa Townsend Hook Paper Makers for provision of the inoculum.

Funding

This work was supported by the EPSRC project number EP/K014900/1 (MacroBioCrude: Developing an Integrated Supply and Processing Pipeline for the Sustained Production of Ensiled Macroalgae-derived Hydrocarbon Fuels) and the University of Greenwich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Milledge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milledge, J.J., Nielsen, B.V. & Harvey, P.J. The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J Appl Phycol 31, 779–786 (2019). https://doi.org/10.1007/s10811-018-1512-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1512-4

Keywords

Navigation