Skip to main content
Log in

The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation

  • 6th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The term ‘stress’ is widely used in the algal literature, usually in the context of the response of algae to changed abiotic and biotic factors. ‘Stress’ is seen as the cause of changes in algal metabolism and composition and often as a factor inducing the overproduction of particular desirable secondary metabolites. However, ‘stress’ is used differently by different authors and is often ill-defined, with no clear separation of cause and effect. This lack of a defined stress concept leads to poor experimental design, miscommunication of results and potentially erroneous conclusions. This paper reviews the stress concept as it applies to algae, especially microalgae. Here, stress is defined as the disruption of homeostasis due to a stressor and the stress response represents the changes in cell metabolism during acclimation and the restoration of homeostasis. Once homeostasis is restored the cell is no longer stressed. The stages of the stress response, i.e. alarm, regulation, acclimation and adaptation, are described. The well-studied responses of the green halophilic alga Dunaliella to changes in salinity are used as an example to illustrate the stress response and acclimation to the changed salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belmans C, van Laere A (1987) Glycerol cycle enzymes and intermediates during adaptation of Dunaliella tertiolecta cells to hyperosmotic stress. Plant Cell Environ 10:185–190

    CAS  Google Scholar 

  • Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr 43:129–135

    CAS  Google Scholar 

  • Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL (2016) Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress. New Phytol 212:920–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka MA, Huisman JM (1993) The ecology of Dunaliella salina (Chlorophyceae, Volvocales)—effect of environmental conditions on aplanospore formation. Bot Mar 36:233–243

    Google Scholar 

  • Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590

    Google Scholar 

  • Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    CAS  Google Scholar 

  • Bravo I, Figueroa R (2014) Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2:11–32

    PubMed  PubMed Central  Google Scholar 

  • Brown AD, Borowitzka LJ (1979) Halotolerance of Dunaliella. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 1. Academic Press, New York, pp 139–190

    Google Scholar 

  • Brussaard CPD, Noordeloos AAM, Riegman R (1997) Autolysis kinetics of the marine diatom Ditylum brightwellii (Bacillariophyceae) under nitrogen and phosphorus limitation and starvation. J Phycol 33:980–987

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. W.W. Norton, NY

    Google Scholar 

  • Carl C, de Nys R, Lawton RJ, Paul NA (2014) Methods for the induction of reproduction in a tropical species of filamentous Ulva. PLoS One 9(5):e97396

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Jiang J-G, Wu G-H (2009) Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. J Agric Food Chem 57:6178–6182

    CAS  PubMed  Google Scholar 

  • Chen H, Chen S-L, Jiang J-G (2011) Effect of Ca2+ channel block on glycerol metabolism in Dunaliella salina under hypoosmotic and hyperosmotic stresses. PLoS One 6(12):e28613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J. https://doi.org/10.1111/tpj.13299:n/a-n/a

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    CAS  PubMed  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta Bioenerg 1847:468–485

    CAS  Google Scholar 

  • Dietz K-J, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenfeld J, Cousin J-L (1984) Ionic regulation of the unicellular green alga Dunaliella tertiolecta: response to hypertonic shock. J Membr Biol 77:45–55

    CAS  Google Scholar 

  • El-Baky HHA, El Baz FK, El-Baroty GS (2004) Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 6:49–57

    Google Scholar 

  • Fang L, Qi S, Xu Z, Wang W, He J, Chen X, Liu J (2017) De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Res 23:135–149

    Google Scholar 

  • Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:11718–17723

    Google Scholar 

  • Fisher M, Zamir A, Pick U (1998) Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin. J Biol Chem 273:17553–17558

    CAS  PubMed  Google Scholar 

  • Fogg GE (2001) Algal adaptation to stress—some general remarks. In: Rai L, Gaur J (eds) Algal adaptation to environmental stresses. Springer, Berlin, pp 1–19

  • Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G (2016) Regulated cell death and adaptive stress responses. Cell Mol Life Sci 73:2405–2410

    CAS  PubMed  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    CAS  Google Scholar 

  • Gee R, Goyal A, Byerrum RU, Tolbert NE (1993) Two isoforms of dihydroxyacetone phosphate reductase from the chloroplasts of Dunaliella tertiolecta. Plant Physiol 103:243–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M (2013) Homeostasis: an underestimated focal point of ecology and evolution. Plant Sci 211:92–101

    CAS  PubMed  Google Scholar 

  • Goldstein DS, Kopin IJ (2007) Evolution of concepts of stgress. Stress 10:109–120

    PubMed  Google Scholar 

  • Goyal A (2007a) Osmoregulation in Dunaliella, Part I: effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (HL 25/8). Plant Physiol Biochem 45:696–704

    CAS  PubMed  Google Scholar 

  • Goyal A (2007b) Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem 45:705–710

    CAS  PubMed  Google Scholar 

  • Grime JP (1989) The stress debate: symptom of impending synthesis? Biol J Linn Soc 37:3–17

    Google Scholar 

  • Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 66:113–127

    CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill Y (2015) Are aquaporins the missing transmembrane osmosensors? J Membr Biol 248:753–765

    CAS  PubMed  Google Scholar 

  • Hinkle LE (1974) The concept of “stress” in the biological and social sciences. Int J Psychiatry Med 5:335–357

    PubMed  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    CAS  PubMed  Google Scholar 

  • Imai I, Itakura S (1999) Importance of cysts in the population dynamics of the red tide flagellate Heterosigma akashiwo (Raphidophyceae). Mar Biol 133:755–762

    Google Scholar 

  • Issa AA (1996) The role of calcium in the stress response of the halotolerant green alga Dunaliella bardawil Ben-Amotz et Avron. Phyton (Horn) 36:295–302

    CAS  Google Scholar 

  • Jiménez C, Berl T, Rivard CJ, Edelstein CL, Capasso JM (2004) Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochim Biophys Acta Mol Cell Res 1644:61–69

    Google Scholar 

  • Katz A, Pick U, Avron M (1992) Modulation of Na+/H+ antiporter activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plant Physiol 100:1224–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 6:1459–1472

    CAS  PubMed  Google Scholar 

  • Kessly DS, Brown AD (1981) Salt relations of Dunaliella. Transitional changes in glycerol content and oxygen exchange reactions on water stress. Arch Microbiol 129:154–159

    CAS  Google Scholar 

  • Khona DK, Shirolikar SM, Gawde KK, Hom E, Deodhar MA, D'Souza JS (2016) Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res 16:434–448

    Google Scholar 

  • Kirk DL, Kirk MM (1986) Heat shock elicits production of sexual inducer in Volvox. Science 231:51–54

    CAS  PubMed  Google Scholar 

  • Klaas RT, Marcel JWV, Corina PDB (2007) Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquat Microb Ecol 46:253–261

    Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    CAS  PubMed  Google Scholar 

  • Lachapelle J, Bell G, Colegrave N (2015) Experimental adaptation to marine conditions by a freshwater alga. Evolution 69:2662–2675

    CAS  PubMed  Google Scholar 

  • Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758

    Google Scholar 

  • Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167

    CAS  Google Scholar 

  • Lavaud J (2007) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotechnol 1:267–287

    Google Scholar 

  • Lei G, Qiao D, Bai L, Xu H, Cao Y (2008) Isolation and characterization of a mitogen-activated protein kinase gene in the halotolerant alga Dunaliella salina. J Appl Phycol 20:13–17

    CAS  Google Scholar 

  • Lichtenthaler HK (1988) In vivo chlorophyll fluorscence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 129–142

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    CAS  Google Scholar 

  • Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–189

    CAS  PubMed  Google Scholar 

  • Lilley RM, Goyal A, Marengo T, Brown AD (1987) The response of Dunaliella to salt stress: a comparison of effects on photosynthesis, and on the intracellular levels of the osmoregulatory solute glycerol, the adenine nucleotides and the pyridine nucleotides. In: Biggens J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff Publishers, Dordrecht, pp 193–196

    Google Scholar 

  • Lohbeck KT, Riebesell U, Collins S, Reusch TBH (2013) Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 67:1892–1900

    PubMed  Google Scholar 

  • Lohbeck KT, Riebesell U, Reusch TBH (2014) Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proc R Soc B 281(1786):20140003

    PubMed  Google Scholar 

  • Maeda M, Thompson JA (1986) On the mechanisms of rapid plasma membrane and chloroplast envelope expansion in Dunaliella salina exposed to hypo-osmotic shock. J Cell Biol 102:289–297

    CAS  PubMed  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    CAS  PubMed  Google Scholar 

  • Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta Bioenerg 1807:897–905

    CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    CAS  PubMed  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to growth of Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    CAS  PubMed  Google Scholar 

  • Nedelcu AM (2005) Sex as a response to oxidative stress: stress genes co-opted for sex. Proc R Soc B 272:1935–1940

    CAS  PubMed  Google Scholar 

  • Nedelcu AM, Marcu O, Michod RE (2004) Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes. Proc R Soc Lond B 271:1591–1596

    CAS  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145

    CAS  PubMed  Google Scholar 

  • Parkhill J-P, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Google Scholar 

  • Perrineau M-M, Zelzion E, Gross J, Price DC, Boyd J, Bhattacharya D (2014) Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ Microbiol 16:1755–1766

    CAS  PubMed  Google Scholar 

  • Pick U (1992) ATPases and ion transport in Dunaliella. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry, and biotechnology. CRC Press, Boca Raton, pp 63–97

    Google Scholar 

  • Popova LG, Shumkova GA, Andreev IM, Balnokin YV (2005) Functional identification of electrogenic Na+-translocating ATPase in the plasma membrane of the halotolerant microalga Dunaliella maritima. FEBS Lett 579:5002–5006

    CAS  PubMed  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137(Suppl C):142–157

    CAS  Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 385–412

    Google Scholar 

  • Remmers IM, Hidalgo-Ulloa A, Brandt BP, Evers WAC, Wijffels RH, Lamers PP (2017) Continuous versus batch production of lipids in the microalgae Acutodesmus obliquus. Bioresour Technol 244:1384–1392

    CAS  PubMed  Google Scholar 

  • Rosenwasser S, Graff van Creveld S, Schatz D, Malitsky S, Tzfadia O, Aharoni A, Levin Y, Gabashvili A, Feldmesser E, Vardi A (2014) Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc Nat Acad Sci 111:2740–2745

    CAS  PubMed  Google Scholar 

  • Sadka A, Lers A, Zamir A, Avron M (1989) A critical examination of the role of de novo protein synthesis in the osmotic adaptation of the halotolerant alga Dunaliella. FEBS Lett 244:93–98

    CAS  Google Scholar 

  • Sadka A, Himmelhoch S, Zamir A (1991) A 150 Kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol 95:822–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum C-E, Buckling A, Smirnoff N, Studholme D, Yvon-Durocher G (2017) Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. bioRxiv. https://doi.org/10.1101/176040

  • Schulte BM (2014) What is environmental stress? Insights from fish living in a variable environment. J Exp Biol 217:23–34

    Google Scholar 

  • Selye H (1973) The evolution of the stress concept: the originator of the concept traces its development from the discovery in 1936 of the alarm reaction to modern therapeutic applications of syntoxic and catatoxic hormones. Am Sci 61(6):692–699

    CAS  PubMed  Google Scholar 

  • Slaveykova V, Sonntag B, Gutiérrez JC (2016) Stress and protists: no life without stress. Eur J Protistol 55(A):39–49

    PubMed  PubMed Central  Google Scholar 

  • Starr R (1970) Control of differentiation in Volvox. Dev Biol 4:59–100

    Google Scholar 

  • Strain LWS, Borowitzka MA, Daume S (2006) Growth and survival of juvenile greenlip abalone (Haliotis laevigata) feeding on germlings of the macroalgae Ulva sp. J Shellfish Res 25:239–247

    Google Scholar 

  • Strasser RJ (1988) A concept for stress and its application in remote sensing. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Kluwer, Dordrecht, pp 333–337

    Google Scholar 

  • Tammam AA, Fakry EM, El-Sheekh M (2011) Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. Afr J Biotechnol 10:3795–3803

    CAS  Google Scholar 

  • Timmermans KR, Veldhuis MJW, Brussaard CPD (2007) Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquat Microb Ecol 46:253–261

    Google Scholar 

  • Torzillo G, Vonshak A (2013) Environmental stress physiology with reference to mass cultures. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, Chichester, pp 90–111

    Google Scholar 

  • Tsukahara K, Sawayama S, Yagishita T, Ogi T (1999) Effect of Ca2+ channel blockers on glycerol levels in Dunaliella tertiolecta under hypoosmotic stress. J Biotechnol 70:223–225

    CAS  Google Scholar 

  • Weiss M, Pick U (1990) Transient Na+ flux following hyperosmotic shock in the halotolerant alga Dunaliella salina—a response to intracellular pH changes. J Plant Physiol 136:429–438

    CAS  Google Scholar 

  • Yuasa T, Muto S (1992) Ca2+-dependent protein kinase from the halotolerant green alga Dunaliella tertiolecta—partial purification and Ca2+-dependent association of the enzyme to the microsomes. Arch Biochem Biophys 296:175–182

    CAS  PubMed  Google Scholar 

  • Yuasa T, Muto S (1996) Activation of 40-kDa protein kinases in response to hypo- and hyperosmotic shock in the halotolerant green alga Dunaliella tertiolecta. Plant Cell Physiol 37:35–42

    CAS  Google Scholar 

  • Yuasa T, Takahashi K, Muto S (1995) Purification and characterization of a Ca2+-dependent protein kinase from the halotolerant green alga Dunaliella tertiolecta. Plant Cell Physiol 36:699–708

  • Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y (2017) ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. J Photochem Photobiol B 173(Suppl C):360–367

    CAS  PubMed  Google Scholar 

  • Zhao R, Ng DHP, Fang L, Chow YYS, Lee YK (2016) MAPK in Dunaliella tertiolecta regulates glycerol production in response to osmotic shock. Eur J Phycol 51:119–128

    CAS  Google Scholar 

Download references

Acknowledgements

The motivation for writing this paper has come from reading many papers which superficially attribute a multitude of metabolic changes in algal cultures to ‘stress’, but which appear to have no clear concept of what constitutes ‘stress’. This paper has greatly benefitted from discussions with John Raven, John Beardall, Avigad Vonshak, David Suggett and Navid Moheimani and their comments on drafts of this paper; however, the views contained herein are wholly my own. Many discussions with students also helped to clarify my understanding of what is meant by stress in algae. I would also like to thank the three reviewers for their incisive comments which have helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borowitzka, M.A. The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. J Appl Phycol 30, 2815–2825 (2018). https://doi.org/10.1007/s10811-018-1399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1399-0

Keywords

Navigation