Skip to main content
Log in

Managing disturbance: the response of a dominant intertidal seaweed Ascophyllum nodosum (L.) Le Jolis to different frequencies and intensities of harvesting

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The rockweed Ascophyllum nodosum is a dominant component of intertidal communities across the North Atlantic Ocean, providing both habitat and primary productivity to nearshore ecosystems. Commercial exploitation of this species is widespread and typically involves cutting the distal portion of fronds thereby permitting regrowth by lateral branching and generation of new fronds from the perennial holdfast. Two key management parameters for determining the sustainability of this resource are the cutting height and the recovery period between successive harvests. Here, we assess the influence of these two parameters on several indicators of exploitation, including harvested biomass, remaining biomass, annual harvest yield, and biomass recovery. Over a 28-year period, treatments of two levels of cutting height (15 and 30 cm) and five levels of recovery period (1, 2, 3, 4, and 5 years) were applied to individual 25-m2 plots. This study provides unique observations of the long-term impacts of different management scenarios on Ascophyllum biomass. In general, indicators were lower for shorter recovery periods of 1 and 2 years. Surprisingly, longer recovery periods of 4 and 5 years rarely increased indicators, suggesting that a 3-year recovery period maximizes harvested biomass. Moreover, a longer cutting height did not consistently result in increased indicators, and indeed, the 15-cm cutting height often provided higher values (e.g., annual harvest rates), than the 30-cm cutting height, especially at longer recovery periods. Other impacts of harvesting beyond effects on biomass (e.g., reproductive capacity, canopy structure, scale of harvested areas) were not measured but are discussed and merit further investigation to better determine harvesting regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baardseth E (1955) Regrowth of Ascophyllum nodosum after harvesting. Institute for Industrial Research and Standards, Dublin

    Google Scholar 

  • Baardseth E (1970) Synopsis of biological data on knobbed wrack Ascophyllum nodosum (Linneaus) Le Jolis. FAO Fisheries Synopsis. No. 38

  • Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR (2002) Do alternate stable community states exist in the Gulf of Maine rocky intertidal zone? Ecology 83:3434–3448

    Article  Google Scholar 

  • Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR (2004a) Do alternate stable community states exist in the Gulf of Maine rocky intertidal zone? Reply. Ecology 85:1165–1167

    Article  Google Scholar 

  • Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR, Crain CM (2004b) Consumer-controlled community states on Gulf of Maine rocky shores. Ecology 85:1321–1331

    Article  Google Scholar 

  • Cervin G, Lindegarth M, Viejo R, Åberg P (2004) Effects of small-scale disturbances of canopy and grazing on intertidal assemblages on the Swedish west coast. J Exp Mar Biol Ecol 302:35–49

    Article  Google Scholar 

  • Chapman VJ (1950) Seaweeds and their uses. Methuen & Co. Ltd., London

    Google Scholar 

  • Cousens R (1981) The population biology of Ascophyllum nodosum (L.) Le Jolis. Dissertation, Dalhousie University

  • Cousens R (1982) Popular misconceptions about Acophyllum nodosum and their effect on the interpretation of its population dynamics from existing data. Br Phycol J 17:231

    Google Scholar 

  • Cousens R (1984) Estimation of annual production by the intertidal brown alga Ascophyllum nodosum (L.) Le Jolis. Bot Mar 27:217–227

    Article  Google Scholar 

  • Cousens R (1985) Frond size distributions and the effects of the algal canopy on the behavior of Ascophyllum nodosum. J Exp Mar Biol Ecol 92(2-3):231–249

  • de Virville D (1953) Dépeuplement de la flore marine sur les côtes occidentales du Cotentin. Proc 1st Intl Seaweed Symp 1:26-28

  • DFO (1998) Rockweed (Ascophyllum nodosum). DFO Sci Stock Status Report C3-57(1988)

  • DFO (1999) The impact of rockweed harvest on the habitat of southwest New Brunswick. DFO Maritimes Regional Habitat Status Report 99/2E

  • Dudgeon S, Kübler JE, Wright WA, Vadas RL, Petraitis PS (2001) Natural variability in zygote dispersal of Ascophyllum nodosum at small spatial scales. Funct Ecol 15:595–604

    Article  Google Scholar 

  • Dudgeon S, Petraitis PS (2001) Scale-dependent recruitment and divergence of intertidal communities. Ecology 82:991–1006

    Article  Google Scholar 

  • Dudgeon S, Petraitis PS (2005) First year demography of the foundation species, Ascophyllum nodosum, and its community implications. Oikos 109:405–415

    Article  Google Scholar 

  • Fegley JC (2001) Ecological implications of rockweed, Ascophyllum nodosum (L.) Le Jolis, harvesting. Dissertation, University of Maine

  • Garbary DJ, Galway ME, Halat L (2016) Response to Ugarte et al.: Ascophyllum (Phaeophyceae) annually contributes over 100% of its vegetative biomass to detritus. Phycologia 56:116–118

  • Gendron L, Bergeron P (1985) Développement d'une méthode d'estimation de la biomasse d'A. nodosum restant au sol après une récolte à partir des mesures de la circonférence des plants coupés. Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec. Direction de la recherche scientifique et technique, Document de recherche 85/06

  • Gendron L, Bergeron P, Gosselin L (1988) Détermination d'un niveau de récolte admissible de l'algue brune Ascophyllum nodosum sur la rive sud de l'estuaire du St-Laurent (Anse-au-Persil, Saint-Fabien-sur-Mer et Métis). CSCPCA Document de recherche 88/15

  • Golléty C (2008) Fonctionnement (métabolisme et réseau trophique) d’un système intertidal rocheux abrité, la zone à Ascophyllum nodosum, relation avec la biodiversité algale et animale. Université Pierre et Marie Curie, Dissertation

    Google Scholar 

  • Golléty C, Riera P, Davoult D (2010) Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study. J Sea Res 64:304–312

    Article  Google Scholar 

  • Guiry MD, Morrison L (2013) The sustainable harvesting of Ascophyllum nodosum (Fucaceae, Phaeophyceae) in Ireland, with notes on the collection and use of some other brown algae. J Appl Phycol 25:1823–1830

    Article  Google Scholar 

  • Halat L, Galway ME, Gitto S, Garbary DJ (2015) Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity and relationship to harvesting. Phycologia 54:599–608

    Article  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–201

    Article  Google Scholar 

  • Ingólfsson A, Hawkins SJ (2008) Slow recovery from disturbance: a 20-year study of Ascophyllum canopy clearances. J Mar Biol Assoc UK 88:689–691

    Article  Google Scholar 

  • Jenkins SR, Norton TA, Hawkins SJ (2004) Long term effects of Ascophyllum nodosum canopy removal on mid shore community structure. J Mar Biol Assoc UK 84:327–329

    Article  Google Scholar 

  • Keser M, Vadas RL, Larson BR (1981) Regrowth of Ascophyllum nodosum and Fucus vesiculosus under various harvesting regimes in Maine, USA. Bot Mar 24:29–38

    Article  Google Scholar 

  • Lazo L, Chapman ARO (1996) Effects of harvesting on Ascophyllum nodosum (L.) Le Jol. (Fucales, Phaeophyta): a demographic approach. J Appl Phycol 8:87–103

    Article  Google Scholar 

  • Miller SL, Vadas RL (1984) The population biology of Ascophyllum nodosum. Biological and physical factors affecting survivorship of germlings. Br Phycol J 19:198

    Google Scholar 

  • Petraitis PS, Dudgeon SR (2015) Variation in recruitment and the establishment of alternative community states. Ecology 96:3186–3196

    Article  PubMed  CAS  Google Scholar 

  • Petraitis PS, Methratta ET (2006) Using patterns of variability to test for multiple community states on rocky intertidal shores. J Exp Mar Biol Ecol 338:222–232

    Article  Google Scholar 

  • Petraitis PS, Methratta ET, Rhile EC, Vidargas NA, Dudgeon SR (2009) Experimental confirmation of multiple community states in a marine ecosystem. Oecologia 161:139–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Pielou EC (1981) Rapid estimation of the standing crop of intertidal fucoids on an exposed shore. J Environ Manag 13:81–94

    Google Scholar 

  • Printz H (1956) Recuperation and recolonization of Ascophyllum. Proc 2nd Intl Seaweed Symp 2:194-197

  • Printz H (1959) Investigations of the failure of recuperation and repopulation in cropped Ascophyllum areas. Avh Norske Vidensk Akad I Mat-Naturv Klasse 3:3–15

    Google Scholar 

  • Rangeley RW, Kramer DL (1998) Density-dependent antipredator tactics and habitat selection in juvenile pollock. Ecology 79:943–952

    Article  Google Scholar 

  • Seeley RH, Schlesinger WH (2012) Sustainable seaweed cutting ? The rockweed (Ascophyllum nodosum) industry of Maine and the Maritime Provinces. Ann N Y Acad Sci 1249:84–103

    Article  PubMed  Google Scholar 

  • Seip KL (1980) A computational model for growth and harvesting of the marine alga Ascophyllum nodosum. Ecol Model 8:189–199

    Article  Google Scholar 

  • Sharp GJ (1981) An assessment of Ascophyllum nodosum harvesting methods in southwestern Nova Scotia. Can Tech Rep Fish Aquat Sci 1012

  • Sharp GJ, Pringle JD (1990) Ecological impact of marine plant harvesting in the northwest Atlantic: a review. Hydrobiologia 204/205:17–24

    Article  Google Scholar 

  • Sharp GJ, Semple RE (1991) An assessment of Ascophyllum nodosum resources in Scotia/Fundy. CAFSAC Research Document 91/52

  • Ugarte R, Lauzon-Guay JS, Critchley AT (2016) Comments on Halat L., Galway M.E., Gitto S. & Garbary D.J. 2015. Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity and relationship to harvesting. Phycologia 54(6): 599–608. Phycologia 56:114–115

    Article  Google Scholar 

  • Ugarte RA, Sharp GJ (2001) A new approach to seaweed management in Eastern Canada: the case of Ascophyllum nodosum. Cah Biol Mar 42:63–70

    Google Scholar 

  • Ugarte R, Sharp G (2012) Management and production of the brown algae Ascophyllum nodosum in the Canadian maritimes. J Appl Phycol 24:409–416

    Article  Google Scholar 

  • Ugarte RA, Sharp GJ, Moore B (2006) Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. J Appl Phycol 18:351–359

    Article  Google Scholar 

  • Underwood AJ (1994) On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol Appl 4:3–15

    Article  Google Scholar 

  • Vadas RL, Wright WA, Beal BF (2004) Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum Le Jolis) in Cobscook Bay. Northeastern Nat 11 (special issue 2):123-142

  • Vadas RL, Wright WA, Miller SL (1990) Recruitment of Ascophyllum nodosum: wave action as a source of mortality. Mar Ecol Progr Ser 61:263–272

    Article  Google Scholar 

  • Vandermeulen H (2013) Information to support assessment of stock status of commercially harvested species of marine plants in Nova Scotia: Irish moss, rockweed and kelp. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/042

  • Viejo RM, Åberg P, Cervin G, Lindegarth M (1999) The interactive effects of adult canopy, germling density and grazing on germling survival of the rockweed Ascophyllum nodosum. Mar Ecol Progr Ser 187:113–120

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th ed. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work received funding from the Ministère de l’Agriculture des Pêcheries et de l’Alimentation du Québec (MAPAQ), from the Canadian Department of Fisheries and Oceans (DFO) and Laval University. We acknowledge the assistance of all biologists, technicians, students, and volunteers who helped with the fieldwork, especially Gilles Savard, Renée Morneau, Lucienne Chénard, Marie-France Beaulieu, and Nathalie Paille. Special thanks also to Marie-Dominique Fréchette and Brigitte Fréchette for their assistance in the field. We thank Karine Gagnon for compiling the data and Louis Gosselin for helpful discussions and his contribution to fieldwork early in the project. We also thank Hélène Crépeau and Benoît Bruneau for their advice on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Gendron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendron, L., Merzouk, A., Bergeron, P. et al. Managing disturbance: the response of a dominant intertidal seaweed Ascophyllum nodosum (L.) Le Jolis to different frequencies and intensities of harvesting. J Appl Phycol 30, 1877–1892 (2018). https://doi.org/10.1007/s10811-017-1346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1346-5

Keywords

Navigation