Skip to main content

Advertisement

Log in

A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2018

This article has been updated

Abstract

Terrestrial diatom communities are dynamic, partially unknown and potential bioindicators of the soil ecological quality. Many different sampling methods for soil algae can be found in the literature. However, so far none of them have been tested for their performance with soil diatom communities and given recommendations for obtaining a representative diatom sample for bioindication purposes. The aim of this study was to develop a standardized sampling protocol for terrestrial diatoms and test the spatial variability of the communities to ensure the representativeness of the samples obtained. Sampling was performed in four different sampling sites in the Attert River basin (NW Luxembourg), using metal cylinders (Ø 5.6 cm) to extract soil cores. Our objective was to determine whether a single cylinder or a mix of several is needed to obtain a representative sample of the community of a certain site. Different statistical analyses (ANOVA, PerMANOVA and Mantel test) have been carried out to assess the reliability of the sampling method and give some recommendations for a routine sampling. Inside each site, no differences were found between single and mixed samples for their species composition or diatom-based quality index values. However, the species richness and diversity had significant differences in the only natural (forest) sampled site. The method here presented has proven to be useful for obtaining representative soil diatom samples and its use is recommended following the advices presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 24 January 2018

    The original version of this article unfortunately contains mistakes. The corrections are given in the following list:.

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Antonelli M, Wetzel CE, Ector L, Teuling AJ, Pfister L (2017) On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecol Indic 75:73–81

    Article  CAS  Google Scholar 

  • Bate N, Newall P (2002) Techniques for the use of diatoms in water quality assessment how many valves. In: John J (ed) Proceedings of the 15th International Diatom Symposium 1998. A.R.G. Gantner Verlag K.G., Ruggell, pp 153–160

    Google Scholar 

  • Bathurst RR, Zori D, Byock J (2010) Diatoms as bioindicators of site use: locating turf structures from the Viking Age. J Archaeol Sci 37:2920–2928

    Article  Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York, pp 527–570

  • Bérard A, Dorigo U, Humbert JF, Martin-Laurent F (2005) Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agron Sustain Dev 25:285–291

    Article  Google Scholar 

  • Bertrand J, Coste C, Le Cohu R, Renon J-P, Ector L (2016) Étude préliminaire sur la présence de diatomées sur les lichens. Bot Lett 163:93–115

    Article  Google Scholar 

  • Blanco S, Doucet M, Fernández-Montiel I, Gabilondo R, Bécares E (2017) Changes in the soil diatom community induced by experimental CO2 leakage. Int J Greenhouse Gas Control 61:104–110

    Article  CAS  Google Scholar 

  • Bock W (1963) Diatomeen extrem trockener Standorte. Nova Hedwigia 5:199–254

    Google Scholar 

  • Bock W (1970) Felsen und Mauern als Diatomeenstandorte. Beih. Nova Hedwigia 31:395–441

    Google Scholar 

  • Brendemühl I (1949) Über die Verbreitung der Erddiatomeen. Arch Mikrobiol 14:407–449

    Article  Google Scholar 

  • CEMAGREF (1982) Étude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Cemagref QE Lyon-AF Bassin Rhône Méditerranée Corse, pp 218

  • Coles AE, Wetzel CE, Martínez-Carreras N, Ector L, McDonnell JJ, Frentress J, Klaus J, Hoffmann L, Pfister L (2016) Diatoms as a tracer of hydrological connectivity: are they supply limited? Ecohydrology 9:631–645

    Article  Google Scholar 

  • Corine Land Cover (2012) http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012. Accessed 15 March 2017

  • Dorokhova MF (2007) Diatoms as indicators of soil conditions in oil production regions. Oceanol Hydrobiol Stud 36(suppl 1):129–135

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Elster J, Lukesová A, Svoboda J, Kopecky J (1999) Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec 35:231–254

    Article  Google Scholar 

  • Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft-, und Flechtenalgen, 2. Auflage edn. Springer Spektrum, Berlin

  • European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Comm L327:1–73

    Google Scholar 

  • Falasco E, Ector L, Isaia M, Wetzel CE, Hoffmann L, Bona F (2014) Diatom flora in subterranean ecosystems: a review. Int J Speleol 43:231–251

    Article  Google Scholar 

  • Fazlutdinova AI, Sukhanova NV (2014) Composition of soil diatoms in zones of impact from oil production complexes. Russ J Ecol 45:188–193

    Article  CAS  Google Scholar 

  • Fernández MR, Martín G, Corzo J, de la Linde A, Garcia E, Lopez M, Sousa M (2017) Design and testing of a new diatom-based index for heavy metal pollution. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0409-6

  • Flower RJ (2005) A review of diversification trends in diatom research with special reference to taxonomy and environmental applications using examples from Lake Baikal and elsewhere. Proc Calif Acad Sci 56:107–128

    Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FA (2009) The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hassan GS, Espinosa MA, Isla FI (2008) Fidelity of dead diatom assemblages in estuarine sediments: how much environmental information is preserved? PALAIOS 23:112–120

    Article  Google Scholar 

  • Heger TJ, Straub F, Mitchell EAD (2012) Impact of farming practices on soil diatoms and testate amoebae: a pilot study in the DOK-trial at Therwil, Switzerland. Eur J Soil Biol 49:31–36

    Article  Google Scholar 

  • Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Susswasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen fur die okologische Praxis. Uber 700 der haufigsten Arten und ihre Okologie. A.R.G. Gantner Verlag K.G., Ruggell

  • Hunt ME, Floyd GL, Stout BB (1979) Soil algae in field and forest environments. Ecology 60:362–375

    Article  CAS  Google Scholar 

  • Hustedt F (1942) Aërophile Diatomeen in der nordwestdeutschen Flora. Ber Deutsch. Bot Ges 60:55–73

    Google Scholar 

  • Ivarsson LN, Ivarsson M, Lundberg J, Sallstedt T, Rydin C (2013) Epilithic and aerophilic diatoms in the artificial environment of Kungsträdgården metro station, Stockholm, Sweden. Int J Speleol 42:289–297

    Article  Google Scholar 

  • Johansen JR, Javakul A, Rushforth SR (1982) Effects of burning on the algal communities of a high desert soil near Wallsburg, Utah. J Range Manag 35:598–600

    Article  Google Scholar 

  • Kahlert M, Rašić IS (2015) Similar small-scale variation of diatom assemblages on different substrates in a mesotrophic stream. Acta Bot Croat 74:363–376

    CAS  Google Scholar 

  • Kale A, Levkov Z, Karthick B (2017) Typification of two species of Luticola (Bacillariophyta) from aerophilic habitats of the Western Ghats, India. Phytotaxa 298:29–42

    Article  Google Scholar 

  • Kelly MG, Cazaubon A, Coring E, Dell'Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B, Kwandrans J, Laugaste R, Lindstrøm E-A, Leitao M, Marvan P, Padisák J, Pipp E, Prygiel J, Rott E, Sabater S, van Dam H, Vizinet J (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224

    Article  Google Scholar 

  • Klaus J, Wetzel CE, Martínez-Carreras N, Ector L, Pfister L (2015) A tracer to bridge the scales: on the value of diatoms for tracing fast flow path connectivity from headwaters to meso-scale catchments. Hydrol Process 29:5275–5289

    Article  Google Scholar 

  • Kolkwitz R, Marsson M (1909) Ökologie der tierischen Saprobien. Int Rev Ges Hydrobiol 2:126–152

    Article  Google Scholar 

  • Krammer K (2000) The genus Pinnularia. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 1. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Kulikovskiy MS, Lange-Bertalot H, Witowski A et al (2010) Diatom assemblages from Sphagnum bogs of the world. I. Nur bog in northern Mongolia. Biblioth Diatomol 55:1–326

    Google Scholar 

  • Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests. J Phycol 40:70–73

    Article  Google Scholar 

  • Lange-Bertalot H (2001) Navicula sensu stricto. 10 Genera separated from Navicula sensu lato. Frustulia. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 2. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Lange-Bertalot H, Cavacini P, Tagliaventi N, Alfinito S (2003) Diatoms of Sardinia. Rare and 76 new species in rock pools and other ephemeral waters. Iconogr Diatomol 12:1–438

    Google Scholar 

  • Lange-Bertalot H, Bąk M, Witowski A, Tagliaventi N (2011) Eunotia and some related genera. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 6. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Lecointe C, Coste M, Prygiel J (1993) “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269–270:509–513

    Article  Google Scholar 

  • Lemes-da-Silva NM, Garey MV, Branco LHZ (2017) Floristic diversity, richness and distribution of Trentepohliales (Chlorophyta) in Neotropical ecosystems. Braz. J Bot:1–14. https://doi.org/10.1007/s40415-017-0390-3

  • Levkov Z, Metzeltin D, Pavlov A (2013) Luticola and Luticolopsis. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 7. Koeltz Scientific Books, Köningstein, pp 1–697

  • Lowe R, Kociolek JP, You Q, Wang Q, Stepanek J (2017) Diversity of the diatom genus Humidophila in karst areas of Guizhou, China. Phytotaxa 305:269–284

    Google Scholar 

  • Ludes B, Coste M (1996) Diatomées et médecine légale. Lavoisier Tec & Doc, Paris

    Google Scholar 

  • Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor Ecol 9:341–350

    Article  Google Scholar 

  • Lund JWG (1945) Observations on soil algae I. The ecology, size and taxonomy of British soil diatoms. New Phytol 44:196–219

    Article  Google Scholar 

  • Lund JWG (1946) Observations on soil algae I. The ecology, size and taxonomy of British soil diatoms. New Phytol 45:56–110

    Article  Google Scholar 

  • Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32

    Article  Google Scholar 

  • Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60:414–420

    Article  PubMed  Google Scholar 

  • Martínez-Carreras N, Wetzel CE, Frentress J, Ector L, McDonnell JJ, Hoffmann L, Pfister L (2015) Hydrological connectivity inferred from diatom transport through the riparian-stream system. Hydrol Earth Syst Sci 19:3133–3151

    Article  Google Scholar 

  • McCormick PV, Cairns J (1994) Algae as indicators of environmental change. J Appl Phycol 6:509–526

    Article  Google Scholar 

  • Medlin LK (2009) Diatoms (Bacillariophyta). In: Hedges SB, Kumar S (eds) The Timetree of life. Oxford University Press, Oxford, pp 127–130

    Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2015) Fields: tools for spatial data. National Center for Atmospheric Research, Boulder, CO. https://doi.org/10.5065/D6W957CT

  • Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology Package

  • Pappas JL, Stoermer EF (1996) Quantitative method for determining a representative algal sample count. J Phycol 32:693–696

    Article  Google Scholar 

  • Petersen JB (1915) Studier over danske aërofile alger. Kongel Danske Vidensk Selsk Skr Naturvidensk Math Afd 12:269–380, 4 pls

  • Petersen JB (1928) The aërial algae of Iceland. In: The botany of Iceland, pp 325–447

    Google Scholar 

  • Petersen JB (1935) Studies on the biology and taxonomy of soil algae. C.A. Reitzels Forlag, Copenhagen

    Google Scholar 

  • Petersen JB (1946) Algae collected by Eric Hultén on the Swedish Kamtchatka Expedition, 1920–22: especially from Hot Springs. Kommission hos Munksgaard, Copenhagen

    Google Scholar 

  • Petsch DK, Schneck F, Melo AS (2017) Substratum simplification reduces beta diversity of stream algal communities. Freshw Biol 62:205–213

    Article  CAS  Google Scholar 

  • Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L (2009) The rivers are alive: on the potential for diatoms as a tracer of water source and hydrological connectivity. Hydrol Process 23:2841–2845

    Article  Google Scholar 

  • Piette MHA, De Letter EA (2006) Drowning: still a difficult autopsy diagnosis. Forensic Sci Int 163:1–9

    Article  PubMed  Google Scholar 

  • QGIS Development Team (2017) QGIS geographic information system. Open Source GeospatialFoundation. http://qgis.osgeo.org

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rao CR (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19:23–63

    Google Scholar 

  • Reichardt E (2008) Bemerkenswerte Diatomeenfunde aus Bayern VI. Hantzschia hyperborea (Grun.) Lange-B. Ber Bayer Bot Ges 78:17–22

    Google Scholar 

  • Reichardt E (2012) Neue Diatomeen (Bacillariophyceae) aus dem Gebiet der Stadt Treuchtlingen. Ber Bayer Bot Ges 82:19–32

    Google Scholar 

  • Rühland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic treeline. Arctic Antarct Alp Res 35:110–123

  • Schimanski H (1973) Beitrag zur Diatomeenflora von Erlangen. Nova Hedwigia 24:237–335

    Google Scholar 

  • Schimanski H (1978) Beitrag zur Diatomeenflora des Frankenwaldes. Nova Hedwigia 30:557–633

    Article  Google Scholar 

  • Schlichting HE (1975) Some subaerial algae from Ireland. Br Phycol J 10:257–261

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Soininen J (2007a) Environmental and spatial control of freshwater diatoms—a review. Diatom Res 22:473–490

    Article  Google Scholar 

  • Soininen J (2007b) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Article  Google Scholar 

  • Soininen J, Könönen K (2004) Comparative study of monitoring south-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat Ecol 38:63–75

    Article  Google Scholar 

  • Souffreau C, Vanormelingen P, Verleyen E, Sabbe K, Vyverman W (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324

    Article  Google Scholar 

  • Tauro F, Martínez-Carreras N, Barnich F, Juilleret J, Wetzel CE, Ector L, Hissler C, Pfister L (2015) Diatom percolation through soils: a proof of concept laboratory experiment. Ecohydrology 9:753–764

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton methodik. Schweizerbart. Science Publishers, Stuttgart

    Google Scholar 

  • Vacht P, Puusepp L, Koff T, Reitalu T (2014) Variability of riparian soil diatom communities and their potential as indicators of anthropogenic disturbances. Est J Ecol 63:168–184

    Article  Google Scholar 

  • Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth J Aquatic Ecol 28:117–133

    Article  Google Scholar 

  • Van de Vijver B, Beyens L (1999) Biogeography and ecology of freshwater diatoms in Subantarctica: a review. J Biogeogr 26:993–1000

    Article  Google Scholar 

  • Van de Vijver B, Ledeganck P, Beyens L (2002) Soil diatom communities from Ile de la Possession (Crozet, sub-Antarctica). Polar Biol 25:721–729

    Google Scholar 

  • Venter A, Levanets A, Siebert S, Rajakaruna N (2015) A preliminary survey of the diversity of soil algae and cyanoprokaryotes on mafic and ultramafic substrates in South Africa. Aust J Bot 63:341–352

    Article  CAS  Google Scholar 

  • Werum M, Lange-Bertalot H (2004) Diatomeen in Quellen unter hydrogeologischen und anthropogenen Einflüssen in Mitteleuropa und anderen Regionen [Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts]. Iconogr Diatomol 13:1–417

    Google Scholar 

  • Wetzel CE, Martínez-Carreras N, Hlúbiková D, Hoffmann L, Pfister L, Ector L (2013) New combinations and type analysis of Chamaepinnularia species (Bacillariophyceae) from aerial habitats. Cryptogam Algol 34:149–168

    Article  Google Scholar 

  • Wetzel CE, Ector L, Van de Vijver B, Compere P, Mann DG (2015) Morphology, typification and critical analysis of some ecologically important small naviculoid species (Bacillariophyta). Fottea 15:203–234

    Article  Google Scholar 

  • Wetzel CE, Barragán C, Ector L (2017) Sellaphora lundii nom. et stat. nov. (Bacillariophyta), a forgotten European terrestrial species. Notulae Algarum 38:1–3

  • Willson D, Forest HS (1957) An exploratory study on soil algae. Ecology 38:309–313

    Article  Google Scholar 

  • Wojtal AZ (2013) Species composition and distribution of diatom assemblages in spring waters from various geological formations in southern Poland. Biblioth Diatomol 59:1–436

    Google Scholar 

  • Wu N, Dong X, Liu Y, Wang C, Baattrup-Pedersen A, Riis T (2017) Using river microalgae as indicators for freshwater biomonitoring: review of published research and future directions. Ecol Indic 81:124–131

    Article  CAS  Google Scholar 

  • Yallop ML, Kelly MG (2006) From pattern to process: understanding stream phytobenthic assemblages and implications for determining “ecological status”. Nova Hedwigia 130:357–372

    Google Scholar 

  • Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in north-eastern Italy. Agric Ecosyst Environ 112:1–12

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Luxembourg Institute of Science and Technology (LIST), which provided the opportunity and the necessary funding for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barragán.

Additional information

The original version of this article was revised: In Figs. 45-94. (foot note), “Sellaphora sp. (aff. hustedtii/sardiniensis)” had been recently described as “Sellaphora lundii”. In Table 2, the entire line with “Sellaphora lundii C.E. Wetzel, Barragán & Ector” should be moved after the taxon “Sellaphora atomoides C.E. Wetzel & Van de Vijver”. The data are now correctly shown here.

Appendices

Appendix 1

Figs. 6-44
figure 6

Indicator diatom species found at the Weierbach (WEI), LM Figs 7–41, SEM Figs 41–44. 6–12, 41. Fragilariforma virescens. 13–17, 42. Gomphonema productum. 18–25. Pinnularia perirrorata. 26–31, 43. Eunotia minor. 32–36, 44. Eunotia botuliformis. 37–40. Fragilaria nevadensis

Figs. 45-94
figure 7

Indicator diatom species found at Huewelerbach (HUE), LM Figs 45–91, SEM Figs 92–94. 45–55, 92. Pinnularia sp. (aff. frauenbergiana var. caloneiopsis). 56–57. Hantzschia calcifuga. 58–66. Sellaphora lundii. 67–82, 93. Sellaphora atomoides. 83–86. Sellaphora subseminulum. 87–91, 94. Pinnularia cf. frequentis

Figs. 95-141
figure 8

Indicator diatom species found at Wollefsbach (WOL), LM Figs 95–139, SEM Figs 140–142. 95–109, 140. Hantzschia amphioxys. 110–113, 141. Pinnularia sp. (aff. bullacostae). 114–123. Nitzschia aff. adamata. 124–126, 142. Craticula minusculoides. 127–139. Surirella aff. terricola

Figs. 143-203
figure 9

Indicator diatom species found at Useldange (USE), LM Figs 143–199, SEM Figs 200–203. 143–164, 200–201. Pinnularia obscura. 165–194, 202. Mayamaea atomus. 195–199, 203. Mayamaea lacunolaciniata

Appendix 2

Table 2 Complete list of diatom taxa observed in terrestrial samples. Relative abundance mean values ± standard deviation and number of samples indicated

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barragán, C., Wetzel, C.E. & Ector, L. A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment. J Appl Phycol 30, 1095–1113 (2018). https://doi.org/10.1007/s10811-017-1336-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1336-7

Keywords

Navigation