Skip to main content
Log in

Geographical variation in morphology of the two dominant kelp species, Ecklonia maxima and Laminaria pallida (Phaeophyceae, Laminariales), on the west coast of Southern Africa

  • 22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Laminaria pallida and Ecklonia maxima are large, commercially valuable kelps that co-dominate inshore waters of the west coast of Southern Africa in a geographically changing pattern. In the south, E. maxima dominates and forms a canopy in shallow waters (< about 5 m deep), with L. pallida forming a sub-canopy and extending down to 20 m or more. Northward along the Southern African coast and into Namibia, E. maxima is progressively replaced by L. pallida. Corresponding with this change in dominance, L. pallida shows certain morphological changes along the south-to-north geographical gradient. To explain these phenomena, we examined a range of morphological characters in both kelps (stipe length, stipe weight, stipe outer diameter, stipe inner diameter, length of hollow section in the stipe, and frond weight), and various environmental factors (seawater temperature, seawater turbidity, cloud/fog data, daylength, and wave and wind data). Our results, based on measurements at seven sites along 1600 km of coast between Cape Town and Swakopmund (Namibia), quantified and confirmed the change in dominance and the northward increase in stipe hollowness in L. pallida. The morphology of E. maxima did not change with latitude. Water turbidity, wind speed, and wave height differed significantly along the coast. However, only turbidity showed a steady trend, increasing northward in terms of all indicators (chlorophyll a, particulate inorganic carbon, particulate organic carbon) while wind speed and wave height showed a generally decreasing trend. Furthermore, the hollowness of L. pallida was also not related to the flexibility of the stipes. Our results suggest that L. pallida sporophytes may progressively outcompete E. maxima northward, perhaps because they are more low-light tolerant, and we suggest that by developing a hollow stipe, the sporophytes may grow faster in length, potentially increasing their competitive advantage in the shallow water where they must compete with sporophytes of E. maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson RJ, Bolton JJ (1985) Suitability of the agarophyte Suhria vittata (L.) J. Ag. (Rhodophyta: Gelidiaceae) for mariculture: geographical distribution, reproductive phenology and growth of sporelings in culture in relation to light and temperature. S Afr J Mar Sci 3:169–178

    Article  Google Scholar 

  • Anderson RJ, Carrick P, Levitt G, Share A (1997) Holdfasts of adult kelp Ecklonia maxima provide refuges from grazing for recruitment of juvenile kelps. Mar Ecol Prog Ser 159:265–273

    Article  Google Scholar 

  • Anderson RJ, Rand A, Rothman MD, Share A, Bolton JJ (2007) Mapping and quantifying the South African kelp resource. Afr J Mar Sci 29:369–378

    Article  Google Scholar 

  • Andrews W, Hutchings L (1980) Upwelling in the southern Benguela Current. Prog Oceanogr 9:1–81

    Article  CAS  Google Scholar 

  • Berger W, Wefer G (2002) On the reconstruction of upwelling history: Namibia upwelling in context. Mar Geol 180:3–28

    Article  Google Scholar 

  • Bhandari V (2010) Design of machine elements. Tata McGraw-Hill Education Private Limited, Delhi, 930 pp

    Google Scholar 

  • Blinn JF (1982) Light reflection functions for simulation of clouds and dusty surfaces. ACM SIGGRAPH Comp Graph 16(3):21–29

    Article  Google Scholar 

  • Bolton JJ, Anderson RJ (1987) Temperature tolerances of two southern African Ecklonia species (Alariaceae: Laminariales) and of hybrids between them. Mar Biol 96:293–297

    Article  Google Scholar 

  • Bolton JJ, Anderson RJ, Smit AJ, Rothman MD (2012) South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. Afr J Mar Sci 34:147–151

    Article  Google Scholar 

  • Burgess P (2009) Variation in light intensity at different latitudes and seasons, effects of cloud cover, and the amount of direct and diffused light Available at: http://ccfg.org.uk/conferences/downloads/P_Burgess.pdf. Accessed 17 Oct 2016

  • Chapman ARO (1973) Phenetic variability of stipe morphology in relation to season, exposure, and depth in the non-digitate complex of Laminaria Lamour (Phaeophyta, Laminariales) in Nova Scotia. Phycologia 12:53–57

    Article  Google Scholar 

  • Chen Z, Hu C, Muller-Karger F (2007) Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens Environ 109:207–220

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) User manual/tutorial. Primer-E Ltd., Plymouth, 93 pp

    Google Scholar 

  • Demes KW, Pruitt JN, Harley CD, Carrington E (2013) Survival of the weakest: increased frond mechanical strength in a wave-swept kelp inhibits self-pruning and increases whole-plant mortality. Funct Ecol 27:439–445

    Article  Google Scholar 

  • Denny M, Gaylord B, Cowen E (1997) Flow and flexibility. II. The roles of size and shape in determining wave forces on the bull kelp Nereocystis luetkeana. J Exp Biol 200:3165–3183

    PubMed  Google Scholar 

  • Dieckmann GS (1980) Aspects of the ecology of Laminaria pallida (Grev.) J. Ag. off the Cape Peninsula (South Africa). Bot Mar 23:579–585

    Google Scholar 

  • Doxaran D, Froidefond J, Castaing P, Babin M (2009) Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): observations from field and MODIS satellite data. Estuar Coast Shelf Sci 81:321–332

    Article  Google Scholar 

  • Field JG, Griffiths CL, Griffiths RJ, Jarman N, Zoutendyk NP, Velimirov B, Bowes A (1980) Variation in structure and biomass of kelp communities along the South-west Cape coast. Trans Roy Soc S Afr 44:145–203

    Article  Google Scholar 

  • Fowler-Walker MJ, Wernberg T, Connell SD (2006) Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits? Mar Biol 148:755–767

    Article  Google Scholar 

  • Friedland MT, Denny MW (1995) Surviving hydrodynamic forces in a wave-swept environment: consequences of morphology in the feather boa kelp, Egregia menziesii (Turner). J Exp Mar Biol Ecol 190:109–133

    Article  Google Scholar 

  • Gaylord B, Denny M (1997) Flow and flexibility. I. Effects of size, shape and stiffness in determining wave forces on the stipitate kelps Eisenia arborea and Pterygophora californica. J Exp Biol 200:3141–3164

    PubMed  Google Scholar 

  • Hornik V (2014) Windguru http://www.windguru.cz/int/

  • Hurd CL, Pilditch CA (2011) Flow-induced morphological variation affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J Phycol 47:341–351

    Article  PubMed  Google Scholar 

  • Izquierdo J, Pérez-Ruzafa IM, Gallardo T (2002) Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgol Mar Res 55:285–292

    Article  Google Scholar 

  • Jarman NT, Carter R (1981) The primary producers of the inshore regions of the Benguela. Trans Roy Soc S Afr 44:321–326

    Article  Google Scholar 

  • Jerlov N (1977) Classification of sea water in terms of quanta irradiance. J Conseil 37(3):281–287

    Article  Google Scholar 

  • Klochkova TA, Kim GH, Lee KM, Choi H, Belij MN, Klochkova NG (2010) Brown algae (Phaeophyceae) from Russian far eastern seas: re-evaluation of Laminaria multiplicata Petrov et Suchovejeva. Algae 25:77–87

    Article  CAS  Google Scholar 

  • Koehl M (1986) Seaweeds in moving water: form and mechanical function. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge Univ. Press, Cambridge, pp 603–634

    Google Scholar 

  • Lüning K, Dring M (1972) Reproduction induced by blue light in female gametophytes of Laminaria saccharina. Planta 104:252–256

    Article  PubMed  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and scophysiology. Wiley-Interscience, New York, 527pp

    Google Scholar 

  • Marins BV, Amado-Filho GM, Barreto MB, Longo LL (2012) Taxonomy of the southwestern Atlantic endemic kelp: Laminaria abyssalis and Laminaria brasiliensis (Phaeophyceae, Laminariales) are not different species. Phycol Res 60:51–60

    Article  CAS  Google Scholar 

  • Mann K, Jarman N, Dieckmann G (1979) Development of a method for measuring the productivity of the kelp Ecklonia maxima (Osbeck) Papenfuss. Trans R Soc S Afr 44:27–41

    Article  Google Scholar 

  • Matson PG, Edwards MS (2006) Latitudinal variation in stipe hollowing in Eisenia arborea (Phaeophyceae, Laminariales). Phycologia 45:343–348

    Article  Google Scholar 

  • Molloy FJ, Bolton JJ (1990) Utilized and potentially utilizable seaweeds on the Namibian coast: biogeography and accessibility. Hydrobiologia 204/205:293–299

    Article  Google Scholar 

  • Molloy FJ, Bolton JJ (1996) The effects of wave exposure and depth on the morphology of inshore populations of the Namibian kelp, Laminaria schinzii Foslie. Bot Mar 39:525–531

    Google Scholar 

  • Monteiro P, Largier J (1999) Thermal stratification in Saldanha Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela upwelling system. Estuar Coast Shelf Sci 49:877–890

    Article  Google Scholar 

  • Muñoz V, Hernández-González MC, Buschmann AH, Graham M, Vásquez J (2004) Variability in per capita oogonia and sporophyte production from giant kelp gametophytes (Macrocystis pyrifera, Phaeophyceae). Rev Chil Hist Nat 77:639–647

    Google Scholar 

  • National Aeronautics and Space Administration, Moderate resolution image spectroradiometer: http://modis.gsfc.nasa.gov. Accessed 3 Feb 2014

  • Nelson G, Hutchings L (1983) The Benguela upwelling area. Prog Oceanogr 12:333–356

    Article  Google Scholar 

  • Norton T, Mathieson A, Neushul M (1982) A review of some aspects of form and function in seaweeds. Bot Mar 25:501–510

    Article  Google Scholar 

  • Oppliger LV, Correa JA, Engelen AH, Tellier F, Vieira V, Faugeron S, Valero M, Gomez G, Destombe C (2012) Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. PLoS One 7:e39289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petus C, Chust G, Gohin F, Doxaran D, Froidefond J, Sagarminaga Y (2010) Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont Shelf Res 30:379–392

    Article  Google Scholar 

  • Roberson LM, Coyer JA (2004) Variation in blade morphology of the kelp Eisenia arborea: incipient speciation due to local water motion? Mar Ecol Prog Ser 282:115–128

    Article  Google Scholar 

  • Rothman MD (2006) Investigations into the harvesting ecology of the South African kelp Ecklonia maxima (Alariaceae, Laminariales). Dissertation, University of Cape Town, M.Sc

    Google Scholar 

  • Rothman MD, Mattio L, Wernberg T, Anderson RJ, Uwai S, Mohring MB, Bolton JJ (2015) A molecular investigation of the genus Ecklonia (Phaeophyceae, Laminariales) with special focus on the Southern Hemisphere. J Phycol 51:236–246

    Article  CAS  PubMed  Google Scholar 

  • Serisawa Y, Akino H, Matsuyama K, Ohno M, Tanaka J, Yokohama Y (2002) Morphometric study of Ecklonia cava (Laminariales, Phaeophyta) sporophytes in two localities with different temperature conditions. Phycol Res 50:193–199

    Article  Google Scholar 

  • Serisawa Y, Aoki M, Hirata T, Bellgrove A, Kurashima A, Tsuchiya Y, Toshihiko S, Ueda H, Yokohama Y (2003) Growth and survival rates of large-type sporophytes of Ecklonia cava transplanted to a growth environment with small-type sporophytes. J Appl Phycol 15:311–318

    Article  Google Scholar 

  • Shannon L (1985) The Benguela ecosystem. I: evolution of the Benguela physical features and processes. Oceanogr Mar Biol 23:105–182

    Google Scholar 

  • Shannon L, Pillar S (1986) The Benguela ecosystem. Part III. Plankton. Oceanogr Mar Biol Annu Rev 24:65–170

    Google Scholar 

  • Shirley HL (1929) The influence of light intensity and light quality upon the growth of plants. Am J Bot 16:354–390

    Article  CAS  Google Scholar 

  • Simons RH & Jarman NG (1981) Subcommercial harvesting of a kelp on a South African shore. In: Levring T (ed) Proceedings of the 10th International Seaweed Symposium. pp 731-736

  • Smale DA, Wernberg T (2009) Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar Ecol Prog Ser 387:27–37

    Article  Google Scholar 

  • Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SF, Bornman TG, Olbers J, Bolton JJ (2013) A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One 8(12):e81944

    Article  PubMed  PubMed Central  Google Scholar 

  • Stegenga H, Bolton JJ, Anderson RJ (1997) Seaweeds of the South African west coast. Contrib Bolus Herb 18:3–637

    Google Scholar 

  • Tsutsui I, Arai S, Terawaki T, Ohno M (1996) A morphometric comparison of Ecklonia kurome (Laminariales, Phaeophyta) from Japan. Phycol Res 44:215–222

    Article  Google Scholar 

  • Utter B, Denny M (1996) Wave-induced forces on the giant kelp Macrocystis pyrifera (Agardh): field test of a computational model. J Exp Biol 199:2645–2654

    CAS  PubMed  Google Scholar 

  • Velimirov B, Field JG, Griffiths CL, Zoutendyk P (1977) The ecology of kelp bed communities in the Benguela upwelling system. Helgo Meeresun 30:495–518

    Article  Google Scholar 

  • Velimirov B, Griffiths C (1979) Wave-induced kelp movement and its importance for community structure. Bot Mar 22:169–172

    Google Scholar 

  • Waldron H, Probyn T (1992) Nitrate supply and potential new production in the Benguela upwelling system. S Afr J Mar Sci 12:29–39

    Article  Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geol 93:297–313

    Article  Google Scholar 

  • Wernberg T, Coleman M, Fairhead A, Miller S, Thomsen M (2003) Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar Biol 143:47–55

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Agriculture, Forestry and Fisheries, South Africa, the University of Cape Town, and the National Research Foundation (NRF). Thank you to Cathy Boucher for the artwork and AJ Smit for the Namibian temperature data. Lastly, thank you to M. Noffke, J. Fridjhon, S. Conrad, D. Williams and S. John for assisting with field work and sample collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Rothman.

Electronic supplementary material

ESM 1

(PDF 167 kb).

ESM 2

(PDF 217 kb)

ESM 3

(PDF 244 kb)

ESM 4

(PDF 195 kb)

ESM 5

(PDF 226 kb)

ESM 6

(PDF 249 kb)

ESM 7

(PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothman, M.D., Bolton, J.J., Stekoll, M.S. et al. Geographical variation in morphology of the two dominant kelp species, Ecklonia maxima and Laminaria pallida (Phaeophyceae, Laminariales), on the west coast of Southern Africa. J Appl Phycol 29, 2627–2639 (2017). https://doi.org/10.1007/s10811-017-1255-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1255-7

Keywords

Navigation