Skip to main content

Advertisement

Log in

Selection and functional analysis of a Pyropia yezoensis ammonium transporter PyAMT1 in potassium deficiency

  • 22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweeds are believed to have developed unique mechanisms to maintain optimal cellular potassium and sodium concentrations in order to survive in the saline marine environment. To gain a molecular understanding of underlying potassium/sodium homeostasis in seaweeds, full-length cDNA libraries from the multiple stages in the life cycle, including gametophytes, conchosporangia and sporophytes of a marine red alga, Pyropia yezoensis, were constructed. A large portion of genes from each library through the life cycle was revealed to be functionally unknown reconfirming the uniqueness of P. yezoensis genes in terms of evolutionary lineage. Genes that could potentially contribute to potassium deficiency tolerance were selected from the potassium uptake defective Escherichia coli strain expressing gametophytes and conchosporangia libraries under the low potassium conditions. Of those, an ammonium transporter gene, PyAMT1, was demonstrated to enhance potassium deficiency tolerance effectively when expressed in the E. coli strain. Potential roles of PyAMT1 and other candidate components in this context are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249

    Article  CAS  PubMed  Google Scholar 

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Pizarro JC, Gomes E, Prisco JT, Grossi-De-Sa MF, Neto OBO (2011) NH4 +-stimulated low-K+ uptake is associated with the induction of H+ extrusion by the plasma membrane H+-ATPase in sorghum roots under K+ deficiency. J Plant Physiol 168:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–930

    Article  Google Scholar 

  • Barrero-Gil J, Garciadeblas B, Benito B (2005) Sodium, potassium-ATPases in algae and oomycetes. J Bioenerg Biomembr 37:269–278

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zauner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowes GW (1969) Carbonic anhydrase in marine algae. Plant Physiol 44:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracey MH, Christiansen J, Tovar P, Cramer SP, Bartlett SG (1994) Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry 33:13126–13131

    Article  CAS  PubMed  Google Scholar 

  • Chan CX, Zauner S, Wheeler G, Grossman AR, Prochnik SE, Blouin NA, Zhuang YY, Benning C, Berg GM, Yarish C, Eriksen RL, Klein AS, Lin SJ, Levine I, Brawley SH, Bhattacharya D (2012) Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol 158:2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CS, Dai ZZ, Xu Y, Ji DH, Xie CT (2016) Cloning, expression, and characterization of carbonic anhydrase genes from Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 28:1403–1417

    Article  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van De Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eppley RW (1958) Sodium exclusion and potassium retention by the red marine alga, Porphyra perforata. J Gen Physiol 41:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein W, Buurman E, Mclaggan D, Naprstek J (1993) Multiple mechanisms, roles and controls of K+ transport in Escherichia coli. Biochem Soc T 21:1006–1010

    Article  CAS  Google Scholar 

  • Escassi L, Aguilera J, Figueroa FL, Fernandez JA (2002) Potassium drives daily reversible thallus enlargement in the marine red alga Porphyra leucosticta (Rhodophyta). Planta 214:759–766

    Article  CAS  PubMed  Google Scholar 

  • He LW, Huang AY, Shen SD, Niu JF, Wang GC (2012) Comparative analysis of microRNAs between sporophyte and gametophyte of Porphyra yezoensis. Comp Funct Genom 2012:912843

    Google Scholar 

  • Inoue A, Mashino C, Uji T, Saga N, Mikami K, Ojima T (2015) Characterization of an eukaryotic PL-7 alginate lyase in the marine red alga Pyropia yezoensis. Current Biotechnol 4:240–248

    Article  CAS  Google Scholar 

  • Kakinuma M, Suzuki K, Iwata S, Coury DA, Iwade S, Mikami K (2016) Isolation and characterization of a new DUR3-like gene, PyDUR3.3, from the marine macroalga Pyropia yezoensis. Fish Sci 82:171–184

    Article  CAS  Google Scholar 

  • Kakinuma M, Nakamoto C, Kishi K, Coury DA, Amano H (2017) Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). Mar Environ Res 128:76–87

    Article  CAS  PubMed  Google Scholar 

  • Karsten U (2012) Seaweed acclimation to salinity and desiccation stress. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Heidelberg, pp 87–107

    Chapter  Google Scholar 

  • Kimber MS, Pai EF (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J 19:1407–1418

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol 41:21–53

    Article  CAS  Google Scholar 

  • Kishimoto M, Shimajiri Y, Oshima A, Hase A, Mikami K, Akama K (2013) Functional expression of an animal type-Na+-ATPase gene from a marine red seaweed Porphyra yezoensis increases salinity tolerance in rice plants. Plant Biotechnol 30:417–422

    Article  CAS  Google Scholar 

  • Kitade Y, Fukuda S, Nakajima M, Watanabe T, Saga N (2002) Isolation of a cDNA encoding a homologue of actin from Porphyra yezoensis (Rhodophyta). J Appl Phycol 14:135–141

    Article  CAS  Google Scholar 

  • Li L, Saga N, Mikami K (2008) Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis. J Exp Bot 59:3575–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YX, Li CJ, Zhang FS (2005) Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. Ann Bot 95:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda R, Ozgur R, Higashi Y, Takechi K, Takano H, Takio S (2015) Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis. Mar Biotechnol 17:199–210

    Article  CAS  PubMed  Google Scholar 

  • Merlin C, Masters M, Mcateer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185:6415–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Ramirez C, Mora SI, Trejo J, Pantoja O (2011) PvAMT1;1, a highly selective ammonium transporter that functions as H+/NH4 + Symporter. J Biol Chem 286:31113–31122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantoja O (2012) High affinity ammonium transporters: molecular mechanism of action. Front Plant Sci 3:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Front Plant Sci 3:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provart NJ, Majeau N, Coleman JR (1993) Characterization of pea chloroplastic carbonic anhydrase. Expression in Escherichia coli and site-directed mutagenesis. Plant Mol Biol 22:937–943

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Nieves-Cordones M, Aleman F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plantarum 134:598–608

    Article  CAS  Google Scholar 

  • Shen S, Zhang G, Li Y, Wang L, Xu P, Yi L (2011) Comparison of RNA expression profiles on generations of Porphyra yezoensis (Rhodophyta), based on suppression subtractive hybridization (SSH). BMC Res Notes 4:428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Muller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Szczerba MW, Britto DT, Ali SA, Balkos KD, Kronzucker HJ (2008) NH4 +-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.) J Exp Bot 59:3415–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uji T, Hirata R, Mikami K, Mizuta H, Saga N (2012a) Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Mol Biol Rep 39:7973–7980

    Article  CAS  PubMed  Google Scholar 

  • Uji T, Monma R, Mizuta H, Saga N (2012b) Molecular characterization and expression analysis of two Na+/H+ antiporter genes in the marine red alga Porphyra yezoensis. Fisheries Sci 78:985–991

    Article  CAS  Google Scholar 

  • Wiencke C, Stelzer R, Lauchli A (1983) Ion compartmentation in Porphyra umbilicalis determined by electron-probe X-ray microanalysis. Planta 159:336–341

    Article  CAS  PubMed  Google Scholar 

  • Yuan LX, Loque D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, Von Wiren N (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BY, Yang F, Wang GC, Peng G (2010) Cloning and quantitative analysis of the carbonic anhydrase gene from Porphyra yezoensis. J Phycol 46:290–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Takae Miyazaki and Mr. Hajime Takiguchi for taking care of the seaweed cultures, Dr. Yuko Makita and Dr. Minami Matsui (RIKEN Center for Sustainable Resource Science) for creating the P. yezoensis BLAST search engine and Dr. Megumu Takahashi (Tokyo University of Agriculture) for providing a photo of conchosporangium generation. We appreciate the contribution of the Marine Resources Research Center, Aichi Fisheries Research Institute in kindly providing the P. yezoensis strain U51 and Dr. Nobuyuki Uozumi (Tohoku University) for providing the E. coli TK2463 strain. Many thanks also go to Dr. Michael Adams for comments and discussion on the paper. This work was supported by funding from the RIKEN Incentive Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoung Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, E., Mikami, K. & Shin, R. Selection and functional analysis of a Pyropia yezoensis ammonium transporter PyAMT1 in potassium deficiency. J Appl Phycol 29, 2617–2626 (2017). https://doi.org/10.1007/s10811-017-1196-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1196-1

Keywords

Navigation