Skip to main content
Log in

The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultivation temperature is one of the major factors affecting the growth and lipid accumulation of microalgae. In this study, the effects of temperature on the growth, lipid content, fatty acid composition and biodiesel properties of the marine microalgae Chaetoceros sp. FIKU035, Tetraselmis suecica FIKU032 and Nannochloropsis sp. FIKU036 were investigated. These species were cultured at different temperatures (25, 30, 35 and 40 °C). The results showed that the specific growth rate, biomass and lipid content of all microalgae decreased with increasing temperature. With regards to fatty acids, the presence of saturated fatty acids (SFAs) in T. suecica FIKU032 and Nannochloropsis sp. FIKU036 decreased with increasing temperature, in contrast with polyunsaturated fatty acids (PUFAs). Moreover, Chaetoceros sp. FIKU035 was the only species that could grow at 40 °C. The highest lipid productivity was observed in Chaetoceros sp. FIKU035 when cultivated at 25 °C (66.73 ± 1.34 mg L−1 day−1) and 30 °C (61.35 ± 2.89 mg L−1 day−1). Moreover, the biodiesel properties (cetane number, cold filter plugging point, kinematic viscosity and density) of the lipids obtained from this species were in accordance with biodiesel standards. This study indicated that Chaetoceros sp. FIKU035 can be considered as a suitable species for biodiesel production in outdoor cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aaroson S (1973) Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J Phycol 9:111–113

    Article  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Chapter  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Glob Chang 18:13–25

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chen SY, Pan LY, Hong MJ, Lee AC (2012) the effects of temperature on the growth of and ammonia uptake by marine microalgae. Bot Stud 53:125–133

    CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogg GE, Thake B (1987) Algae cultures and phytoplankton ecology. 3rd Edn, University of Wisconsin Press, Madison. 269 pp.

  • Gopinath A, Puhan S, Nagarajan G (2009) Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proc Inst Mech Eng Part D J Automob Eng 223:565–583

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 18:229–239

    Article  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol 39:101–138

    Article  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton Univ Press, Princeton 560 pp

    Book  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties and specifications. Renew Sust Energ Rev 16:143–169

    Article  CAS  Google Scholar 

  • Hu Q (2003) Environmental effects on cell composition. In: Richmond A (ed) Handbook of Microalgal culture: biotechnology and applied phycology. Wiley-Blackwell, Hoboken, pp 83–93

    Chapter  Google Scholar 

  • Ippoliti D, González A, Martín I, Sevilla JMF, Pistocchi R, Acién FG (2016) Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J Appl Phycol 28:3159–3166

    Article  CAS  Google Scholar 

  • Islam MA, Magnusson M, Brown RJ, Ayoko GA, Nabi Md N, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676–5702

    Article  Google Scholar 

  • Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. JAOCS 77:613–617

    Article  CAS  Google Scholar 

  • Kalayasiri P, Jeyashoke N, Krisnangkura K (1996) Survey of seed oils for use as diesel fuels. J Am Oil Chem Soc 73:471–474

    Article  CAS  Google Scholar 

  • Knothe G (2005) Oxidative stability of biodiesel: literature overview. In: Knothe G, Van Gerpen J, Krahl J (eds) The biodiesel handbook. AOCS Press, Urbana, pp 122–126

    Chapter  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properites. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Krisnangkura K (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:553–553

    Article  Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102:43–49

    Article  CAS  PubMed  Google Scholar 

  • Leggat W, Whitney SM, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153

    CAS  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production and of main bioconversion technologies for production of biofuels. Appl Microbiol Biot 96:631–645

    Article  CAS  Google Scholar 

  • Meteorological Department (2015) The Climate of Thailand. Retrieved from https://www.tmd.go.th/en/archive/thailand_climate.pdf on 21 December 2016.

  • Montensen SH, Borsheim KY, Rainuzzo JR, Knutsen G (1988) Fatty acid and elemental composition of the marine diatom Chaetoceros gracills Shutt. Effects of silicate deprivation, temperature and light intensity. J Exp Mar Biol Ecol 122:173–185

    Article  Google Scholar 

  • Monyem A, Canakci M, Van Gerpen JH (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl Eng Agric 16:373–378

    Article  Google Scholar 

  • Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult Int 7:261–275

    Article  Google Scholar 

  • Opute FI (1974) Studies on fat accumulation in Nitzschia palea Kütz. Ann Bot 38:889–902

    Article  Google Scholar 

  • Prevot AF, Mordret FX (1976) Utilisation des Colonnes Capillaries de Verre Pour l’Analyse des Corps Gras par Chromotographie en Phase Gazeuse. Rev France Corps Gras 23:409–423

    CAS  Google Scholar 

  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111

    Article  Google Scholar 

  • Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ras M, Steyer J-P, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Bio/Tech 12:153–164

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Renaud SM, Zhou HC, Parry DL, Think LV, Wao KC (1995) Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolate tropical micro algae Isochrysis sp., Nitzshia closterium, N. paleacea and commercial species Isochrysis sp. (clone T.ISO). J Appl Phycol 7:595–602

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Austalian microalgae grown in batch culture. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Sargent JR, Hederson RJ, Tocher DR (1989) The lipids. In: Halver J (ed) Fish nutrition, vol 2. Academic Press, London, pp 153–218

    Google Scholar 

  • Sheng J, Kim HW, Badalamenti JP, Zhou C, Sridharakrishnan S, Krajimalnik-Brown R, Rittmann BE, Vannela R (2011) Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresour Technol 102:11218–11225

    Article  CAS  PubMed  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgae strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  PubMed  Google Scholar 

  • Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  Google Scholar 

  • Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Huang X, Huang Z (2015) Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chin J Oceanol Limnol 33:99–106

    Article  CAS  Google Scholar 

  • Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13

    Article  Google Scholar 

  • Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rate. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, NY, pp 269–285

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand (Grant No. CASAF170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jantana Praiboon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaisutyakorn, P., Praiboon, J. & Kaewsuralikhit, C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. J Appl Phycol 30, 37–45 (2018). https://doi.org/10.1007/s10811-017-1186-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1186-3

Keywords

Navigation