Skip to main content
Log in

Effect of light quality on the growth and proximal composition of Amphora sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We determined the effects of various light spectra (white, blue, green, yellow, and Grolux) on the growth rate, proximate composition, pigment content, and cell size of the marine benthic diatom Amphora sp. during two growth phases of batch cultures. The growth rate was higher under green light and lowest with Grolux and yellow light. Cell size differed significantly between growth phases but remained unaffected by light spectra; the smallest cells were observed on the initial day of culture, whereas larger cells developed in the stationary phase under Grolux treatment. The proximate composition was modified by the light spectra and growth phase. In the exponential growth phase, the protein content was higher with yellow and white light, and lipid content peaked with Grolux. The pigment content (chlorophyll a, carotenoids) was also higher under yellow light. In the stationary growth phase, we noted a higher carbohydrate content under Grolux and yellow light. Our results show that light spectra and growth phase influence the metabolism of Amphora sp., changing its proximate composition, pigment content, growth rate, and cell size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge pp 293

  • Blanchard GF, Montagna PA (1992) Photosynthetic response of natural assemblages of marine benthic microalgae to short- and long-term variations of incident irradiance in Baffin Bay Texas. J Phycol 28:7–14

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Brown MR (2002) Nutritional value of microalgae for aquaculture. In: LE Cruz-Suárez D, Ricque-Marie M, Tapia-Salazar MG Gaxiola-Cortez, Simoes N (eds) Avances en Nutrición Acuícola VI Simposium Internacional de Nutrición Acuícola. 3–6 de septiembre. Cancún Quintana Roo, México, pp 281–292

  • Carboni S, Vignier J, Chiantore M, Tocher DR, Migaud H (2012) Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval development. Aquaculture 324:250–258

    Article  Google Scholar 

  • Chiaverini J (1972) Techniques d’extraction et d’analyse des lipids. Université de Paris et Marie Curie, Paris. Station Zoologique Villefranche-Sur-Mer. Notes de Travail 12: pp 12

  • Correa-Reyes G, Sánchez-Saavedra MP (2001) Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J Shellfish Res 20:603–610

    Google Scholar 

  • Correa-Reyes JG, Sánchez-Saavedra MP, Viana MP, Flores-Acevedo N, Vásquez-Peláez C (2009) Effect of eight benthic diatoms as feed on the growth of red abalone (Haliotis rufescens) post larvae. J Appl Phycol 21:387–393

    Article  CAS  Google Scholar 

  • Courtois de Viçose G, Porta A, Viera MP, Fernández-Palacios H, Izquierdo MS (2012) Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. J Appl Phycol 24:1427–1437

    Article  Google Scholar 

  • Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11:467–476

    Google Scholar 

  • Daume S, Long BM, Crouch P (2003) Changes in amino acid content of an algal feed species (Navicula sp.) and their effect on growth and survival of juvenile abalone (Haliotis rubra). J Appl Phycol 15:201–207

    Article  CAS  Google Scholar 

  • Dawes CJ (1991) Botánica marina. Limusa, México, p. 673

    Google Scholar 

  • de la Peña MR (2007) Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations. J Appl Phycol 19:647–655

    Article  Google Scholar 

  • Doiron K, Linossier I, Fay F, Yong J, Wahid EA, Hadjiev D, Bourgougnon N (2012) Dynamic approaches of mixed species biofilm formation using modern technologies. Mar Environ Res 78:49–47

    Article  Google Scholar 

  • Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton mechanism, consequences, and applications. Aquat Microb Ecol 56:163–176

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Falkowski PG, Owens TG (1980) Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiol 66:592–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Robledo A (2013) Effect of the spectral composition of light on growth and the proximal composition of Scenedesmus obliquus. B.S. Thesis. Universidad Autónoma de Baja California, Facultad de Ciencias Marinas. Ensenada, México. p. 48

  • Fogg GE, Thake BJ (1987) Algal cultures and phytoplankton ecology. University of Wisconsin Press, London, p. 269

    Google Scholar 

  • Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurement of algal gas exchange. Chapman and Hall, New York, p. 256

    Book  Google Scholar 

  • Gilstad M, Sakshaug E (1990) Growth rate of then diatom species from the Barents Sea at different irradiances and day lengths. Mar Ecol Prog Ser 64:169–173

    Article  Google Scholar 

  • Godínez-Ortega JL, Snoeijs P, Robledo D, Freile-Peregrín Y, Pedersén M (2008) Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. J Appl Phycol 20:253–260

    Article  Google Scholar 

  • Gorai T, Katayama T, Obata M, Taguchi M (2014) Low blue light enhances growth rate, light absorption and photosynthetic characteristics of four marine phytoplankton species. J Exp Mar Biol Ecol 459:87–95

    Article  Google Scholar 

  • Guillard RLL, Ryther JH (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs. Aquac Res 31:637–659

    Article  Google Scholar 

  • Hudon C, Bourget E (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330

    Article  Google Scholar 

  • Jiménez-Valera S, Sánchez-Saavedra MP (2016) Growth and fatty acid profiles of microalgae species isolated from the Baja California Peninsula, México. Lat Am J Aquat Res 44:689–702

  • Kawamura T, Takami H (1995) Analysis of feeding and growth rate of newly metamorphosed ablone Haliotis discus hannai fed on four species of benthic diatom. Fish Sci 62:357–358

    Google Scholar 

  • Kawamura T, Roberts RD, Nicholson CM (1998) Factors affecting the food value of diatom strains for post-larval abalone Haliotis iris. Aquaculture 160:81–88

    Article  Google Scholar 

  • Kim T-H, Lee Y, Han S-H, Hwang S-J (2013) The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol 130:75–80

  • Kwon HK, Oh SJ, Yang HS (2011) Effects of temperature and salinity on the growth of marine benthic microalgae for phytoremediation. J Korean Soc Mar Environ Eng 14:130–137

    Article  Google Scholar 

  • Kwon HK, Oh SJ, Yang HS (2013) Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments. Bioresour Technol 129:387–395

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, p. 401

    Book  Google Scholar 

  • Kowallik W (1982) Blue light effects on respiration. Annu Rev Plant Physiol 33:51–72

  • Lafarga-de la Cruz F, Valenzuela-Espinoza E, Millán-Núñez R, Trees CC, Santamaría-del-Ángel E, Núñez-Cebrero F (2006) Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquac Eng 35:51–60

  • Lourenço PB (2002) Computations on historic masonry structures. Prog Struct Engin Mat 4:301–319

    Article  Google Scholar 

  • Lawrence JM (2006) Edible sea urchins: biology and ecology. Elsevier, Amsterdam, p. 529

    Google Scholar 

  • Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marchetti J, Bougaran G, Jauffrais T, Lefebvre S, Rouxel C, Saint-Jean B, Lukomska E, Robert R, Cadoret JP (2013) Effects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso). J Appl Phycol 25:109–119

    Article  CAS  Google Scholar 

  • Mercado JM, Sánchez-Saavedra MP, Correa-Reyes G, Lubián L, Montero O, Figueroa FL (2004) Blue light effect on growth, light absorption characteristics and photosynthesis of five benthic diatom strains. Aquat Bot 78:265–277

    Article  Google Scholar 

  • Mouget JL, Trembling G, Morant-Manceau A, Morançais M, Robert JM (1999) Long-term photacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. Eur J Phycol 34:109–115

    Article  Google Scholar 

  • Mouget JL, Rosa P, Vachoux C, Tremblin T (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445

    Article  Google Scholar 

  • Muller-Feuga A, Moaly J, Kaas R (2007) The microalgae of aquaculture. In: Stottrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science, Oxford, pp. 207–252

    Google Scholar 

  • Pande SV, Khan RP, Venkitasubramanian TA (1963) Microdetermination of lipids and serum total acids. Anal Biochem 6:415–423

    Article  CAS  PubMed  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p. 173

    Google Scholar 

  • Ponis E, Parisi G, Zittelli GC, Lavista F, Robert R, Tredici MR (2008) Pavlova lutheri: production, preservation and uses as food for Crassostrea gigas larvae. Aquaculture 282:97–103

    Article  CAS  Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp. 385–412

    Chapter  Google Scholar 

  • Roberts R, Kawamura T, Takami H (2000) Diatoms for abalone culture: a workshop for abalone farmer. Prepared for 4th International Abalone Symposium. Cawthron Report No. 547. Cawthron Institute, New Zealand 28 pp

  • Romero-Romero CC (2015) Effect of the spectral composition of light on growth and proximate composition of Amphora sp. and their influence on the preservation at cold and cryopreservation. M. Sc. Thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, pp 124

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670

    Article  CAS  Google Scholar 

  • Sánchez-Saavedra MP, Voltolina D (1995) The effect of different light quality on the food value of the diatom Chaetoceros sp. for Artemia franciscana Kellogg. Riv Ital Acquacolt 30:135–138

    Google Scholar 

  • Sánchez-Saavedra MP, Voltolina D (1996) Effect of different photon fluence rates of blue-green light on the biomass quality of a coastal diatom in pilot scale semicontinuous cultures. Sci Mar 60(Suppl. 1):267–272

    Google Scholar 

  • Sánchez-Saavedra MP, Voltolina D (2002) Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures. Cienc Mar 28:273–279

    Google Scholar 

  • Sánchez-Saavedra MP, Voltolina D (2006) The growth rate, biomass production and composition of Chaetoceros sp. grow with different light sources. Aquac Eng 35:161–165

    Article  Google Scholar 

  • Sánchez-Saavedra MP (2013) El uso de las diatomeas bentónicas en la acuacultura. In: Martínez-Córdova LR, Martínez-Porchas M (eds) Alimento natural en acuicultura. AGT Editor, México, pp. 57–93

    Google Scholar 

  • Sánchez-Saavedra MP, Maeda-Martínez AN, Acosta-Galindo S (2016) Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea. J Appl Phycol 28:839–847

    Article  Google Scholar 

  • Seckbach J (2007) Algae and cyanobacteria in extreme environments. Springer, London, p. 814

    Book  Google Scholar 

  • Seyfabadi J, Zohreh R, Zahra AK (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726

    Article  CAS  Google Scholar 

  • Silva-Aciares FR, Riquelme CE (2008) Comparisons of the growth of six diatom species between two configurations of photobioreactors. Aquac Eng 38:26–35

    Article  Google Scholar 

  • Simental-Trinidad JA, Sánchez-Saavedra MP, Correa-Reyes JG (2001) Biochemical composition of benthic marine diatoms using as culture medium a common agricultural fertilizer. J Shellfish Res 20:611–617

    Google Scholar 

  • Siqueiros-Beltrones DA (2002) Diatomeas de la Península de Baja California: Diversidad y Potencial Ecológico. CICIMAR (Centro Interdisciplinario de Ciencias Marinas) – IPN (Instituto Politécnico Nacional). La Paz, Baja California Sur, México p. 102

  • Siqueiros-Beltrones DA, Argumedo-Hernández U (2015) Diatomeas epifitas consumidas por adultos de abulón (Haliotis spp.) en Baja California Sur, México. Rev Mex Biodiver 86(1):111–122

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research, 3rd edn. W H Freeman and Co, New York, p. 887

    Google Scholar 

  • Sorokin C (1973) Dry weight, packed cell volume and optical density. In: Stein JR (ed) Handbook of phycological methods and growth measured. Cambridge University Press, New York, pp. 321–343

    Google Scholar 

  • Stevenson JR, Bothwell M, Lowe R (1996) Algal ecology. Freshwater benthic ecosystems. Academic Press, USA, pp. 1–30

    Google Scholar 

  • Su Y, Lundholm N, Friis SMM, Ellegaard M (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res 7:2363–2372

    Article  Google Scholar 

  • Talarico L (1996) Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci Mar 60(Suppl. 1):205–222

    CAS  Google Scholar 

  • Voskresenskaya NP (1972) Blue-light and carbon metabolism. Annu Rev Plant Physiol 23:219–234

    Article  CAS  Google Scholar 

  • Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D (2015) Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Res 8:121–127

    Article  Google Scholar 

  • Wallen DG, Geen GH (1971) Light quality on concentration of proteins, RNA, DNA and photosynthetic pigments in two species of marine plankton algae. Mar Biol 10:44–51

    Article  CAS  Google Scholar 

  • Welladsen H, Kent M, Mangott A, Li Y (2014) Shelf-life assessment of microalgae concentrates: effect of cold preservation on microalgal nutrition profiles. Aquaculture 430:241–247

    Article  CAS  Google Scholar 

  • Whyte JNC (1987) Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60:231–241

    Article  CAS  Google Scholar 

  • Xing RL, Wang CH, Cao XB, Chang YQ (2008) Settlement, growth and survival of abalone, Haliotis discus hannai, in response to eight monospecific benthic diatoms. J Appl Phycol 20:47–53

    Article  Google Scholar 

  • Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H, Morinaga T (2012) Effect of high frequency of intermittent light on growth and fatty acid profiles of Isochrysis galbana. Aquaculture 338-341:111–117

    Article  CAS  Google Scholar 

  • Zhang S, Xu C, Santschi PH (2008) Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp. Mar Chem 112:81–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by Consejo Nacional de Ciencia y Tecnología (CONACyT, project: SEP-CONACyT 2009-01-130074) and Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE, project: 623108). C.C. Romero-Romero acknowledges her Master’s in Science from CONACyT and CICESE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Pilar Sánchez-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Romero, C.C., Sánchez-Saavedra, M. Effect of light quality on the growth and proximal composition of Amphora sp.. J Appl Phycol 29, 1203–1211 (2017). https://doi.org/10.1007/s10811-016-1029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1029-7

Keywords

Navigation