Skip to main content
Log in

Profiling lipidome changes of Pyropia haitanensis in short-term response to high-temperature stress

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Based on the growing concern for global warming, changes in the lipid profile of the red alga Pyropia haitanensis were examined under different high temperatures. Lipidomes of P. haitanensis cultured at 20 °C as the control group, and 25, 28, and 35 °C as the high-temperature group, were systematically characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and multivariate statistical analysis. Lipidomics analysis identified a total of 39 lipids as lipid biomarkers belonging to the classes including DAG, DGDG, Lyso-MGDG, Lyso-DGDG, SQDG, Lyso-SQDG, Lyso-PA, Lyso-PC, Lyso-PE, Lyso-PI, Lyso-PG, and PIP. The levels of glycolipids, Lyso-PE, Lyso-PI, Lyso-PG, and PIP decreased as the culture temperature increased from 20 to 35 °C. Biomarker-based heat map and box-plots showed the differences in lipid biomarker expression among the four elevated temperatures. The up- or downregulation of these lipid biomarkers offers plausible physiological insights into lipid metabolism in P. haitanensis in response to high-temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173

  • Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351

    Article  Google Scholar 

  • Chen DY, Yan XJ, Xu JL, Su XL, Li LJ (2013) Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp. under cold stress. Metabolomics 9:949–959

    Article  CAS  Google Scholar 

  • Gao YH, Lu YH, Huang SM, Gao L, Liang XX, Wu YN, Wang J, Huang Q, Tang LY, Wang GA, Yang F, Hu SG, Chen ZH, Wang P, Jiang O, Huang R, Xu YH, Yang XF, Ong CN (2014) Identifying early urinary metabolic changes with long-term environmental exposure to cadmium by mass-spectrometry-based metabolomics. Environ Sci Technol 48:6409–6418

    Article  CAS  PubMed  Google Scholar 

  • Guella G, Frassanito R, Mancini I (2003) A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17:1982–1994

    Article  CAS  PubMed  Google Scholar 

  • Han XL, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  PubMed  Google Scholar 

  • Lee RD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B 871:174–181

    Article  Google Scholar 

  • Linting M, van Os BJ, Meulman JJ (2011) Statistical significance of the contribution of variables to the PCA solution: an alternative permutation strategy. Psychometrika 76:440–460

    Article  Google Scholar 

  • O’Connor D, Mortishire-Smith R (2006) High-throughput bioanalysis with simultaneous acquisition of metabolic route data using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry. Anal Bioanal Chem 385:114–121

    Article  PubMed  Google Scholar 

  • Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  PubMed  Google Scholar 

  • Qian FJ, Luo QJ, Yang R, Zhu ZJ, Chen HM, Yan XJ (2015) The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. J Appl Phycol 27:621–632

    Article  CAS  Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids: metabolism, mutants, and membranes. Science 252:80–87

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  • Taguchi R, Toshiaki HJ, Nakanishi H, Yamazaki T, Ishida M, Imagawa M (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B 823:26–36

    Article  CAS  Google Scholar 

  • Toh DF, New LS, Koh H, Chan EC (2010) Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax notoginseng. J Pharm Biomed Anal 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg RA, Hoefsloot HC, Westerhuis JA, KSmilde A, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang XJ, Chen HM, Chen JJ, Luo QJ, Xu JL, Yan XJ (2013) Response of Pyropia haitanensis to agaro-oligosaccharides evidenced mainly by the activation of the eicosanoid pathway. J Appl Phycol 25:1895–1902

    Article  CAS  Google Scholar 

  • Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Xu JL, Chen DY, Yan XJ, Chen JJ, Zhou CX (2010) Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time of flight mass spectrometry. Anal Chim Acta 663:60–68

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chen CS, Ji DH, Hang N, Xie CT (2014) Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. J Appl Phycol 26:607–618

    Article  CAS  Google Scholar 

  • Yan XJ, Li HY, Xu JL, Zhou CX (2010) Analysis of phospholipids in microalga Nitzschia closterium by UPLC-QTOF-MS. Chin J Oceanol Limnol 28:106–112

    Article  CAS  Google Scholar 

  • Yan XJ, Xu JL, Chen JJ, Chen DY, Xu SL, Luo QJ (2012) Lipidomics focusing on serum polar lipids reveals species dependent stress resistance of fish under tropical storm. Metabolomics 8:299–309

    Article  CAS  Google Scholar 

  • Yang R, Zhang XL, Shen ML, Sun X, Chen HM (2013) Sequences of Mn-sod gene from Pyropia haitanensis (Bangiales, Rhodophyta) and its expression under heat shock. Bot Mar 56:249–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province (LQ13B050004), Natural Science Foundation of Ningbo of China (2014A610179, 2014A610183), Science and Technology Major Project of the Ministry of Science and Technology of Zhejiang, China (2012C12907-6), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2011BAD13B08) and K. C. WONG Magna fund in Ningbo University. We thank LetPub (www.letpub.com) for linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangfang Ye or Xiaojun Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The LC-MS chromatograms of P. haitanensis in positive and negative modes (GIF 91 kb)

High Resolution Image (TIFF 44 kb)

Fig. S2

The PCA scores plots of P. haitanensis extracts cultured under different temperatures. 20 °C (stars), 25 °C (circles), 28 °C (diamonds), and 35 °C (GIF 5132 kb)

High Resolution Image (TIFF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, M., Yang, R. et al. Profiling lipidome changes of Pyropia haitanensis in short-term response to high-temperature stress. J Appl Phycol 28, 1903–1913 (2016). https://doi.org/10.1007/s10811-015-0733-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0733-z

Keywords

Navigation