Skip to main content

Advertisement

Log in

Emerging applications of cyanobacterial ultraviolet protecting compound scytonemin

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria are one of the most ancient life forms present today. This phylum of organisms is capable of photosynthesis, and they depend on solar radiation for their survival. They are found under diverse climatic conditions where ultraviolet (UV) radiation can damage cellular machinery. In order to be protected from harmful radiation, many cyanobacteria produce the UV radiation-absorbing compound, scytonemin in the extracellular sheath. In this review, characteristic features of seven sheath-forming cyanobacteria are shown and genes involved in scytonemin biosynthesis are discussed. Scytonemin as a sunscreen compound and its biomedical applications are also summarized. Recent advances on the application of scytonemin as a biosignature for extraterrestrial life on Mars are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balskus EP, Walsh CT (2008) Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J Am Chem Soc 130:15260–15261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balskus EP, Walsh CT (2009) An enzymatic cyclopentyl[b]indole formation involved in scytonemin biosynthesis. J Am Chem Soc 131:14648–14649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balskus EP, Case RJ, Walsh CT (2011) The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiol Ecol 77:322–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction.2nd ed. Prentice-Hall, Englewood Cliffs, p 706

    Google Scholar 

  • Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172

    Article  Google Scholar 

  • Bultel-Poncé V, Felix-Theodose F, Sarthou C, Ponge JF, Bodo B (2004) New pigment from the terrestrial cyanobacterium Scytonema sp. collected on the Mitraka Inselberg, French Guyana. J Nat Prod 67:678–681

    Article  PubMed  Google Scholar 

  • Cady SL, Farmer JD, Grotzinger JP, Schopf JW, Steele A (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–68

    Article  CAS  PubMed  Google Scholar 

  • Castenholz RW (2004) Phototrophic bacteria under UV stress. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer, Dordrecht, pp 445–461

    Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Davis WL, McKay CP (1996) Origins of life: a comparison of theories and application to Mars. Orig Life Evol Biosph 26:61–73

    Article  CAS  PubMed  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agriculture Research, New Delhi, India p.222–223

  • Dillon JG, Castenholz RW (1999) Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life. J Phycol 35:673–681

    Article  CAS  Google Scholar 

  • Dillon JG, Castenholz RW (2003) The synthesis of the UV-screening pigment, scytonemin, and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:484–491

    Article  CAS  PubMed  Google Scholar 

  • Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synthesis of scytonemin, a UV pigment, in a cyanobacterium (Chroococcidiopsis sp). Arch Microbiol 322–331

  • Duan Z, Weinstein EJ, Liu X, Susa M, Choy E, Yang C, Mankin H, Hornicek FJ (2010) Lentiviral shRNA screen of human kinases identifies PLK1 as a potential therapeutic target for osteosarcoma. Cancer Lett 293:220–229

    Article  CAS  PubMed  Google Scholar 

  • Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) Pathology and genetics of tumors of the urinary system and male genital organs. World Health Organization classification of tumors. IARC Press, Lyon

    Google Scholar 

  • Edwards HG, Mohsin MA, Sadooni FN, Nik Hassan NF, Munshi T (2006) Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration. Anal Bioanal Chem 385:46–56

    Article  CAS  PubMed  Google Scholar 

  • Edwards HG, Sadooni F, Vítek P, Jehlicka J (2010) Raman spectroscopy of the Dukhan sabkha: identification of geological and biogeological molecules in an extreme environment. Philos Transact A Math Phys Eng Sci 368:3099–3107

    Article  CAS  Google Scholar 

  • Ekebergh A, Karlsson I, Mete R, Pan Y, Börje A, Mårtensson J (2011) Oxidative coupling as a biomimetic approach to the synthesis of scytonemin. Org Lett 13:4458–4461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellery A, Wynn-Williams D (2003) Why Raman spectroscopy on Mars?—a case of the right tool for the right job. Astrobiology 3:565–579

    Article  CAS  PubMed  Google Scholar 

  • Fischer WW (2008) Biogeochemistry: life before the rise of oxygen. Nature 455:1051–1052

    Article  CAS  PubMed  Google Scholar 

  • Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiol Ecol 63:301–308

    Article  CAS  PubMed  Google Scholar 

  • Fleming ED, Bebout BM, Castenholz RW (2007) Effects of salinity and light intensity on the resumption of photosynthesis in a rehydrated cyanobacterial mat from Baja California Sur, Mexico. J Phycol 43:15–24

    Article  CAS  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem Photobiol 56:17–23

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geitler L. (1932). Cyanophyceae (Blaualgen) In: Rabenhorst L (ed.) Kryptogamen Flora von Deutschland, Österreich und der Schweiz Leipzig: Akademische Verlags Gesellschaft, pp. 1-1196

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  PubMed  Google Scholar 

  • Helms GL, Moore RE, Niemczura WP, Patterson GML, Tomer KB, Gross ML (1988) Scytonemin A, a novel calcium antagonist from a blue-green alga. J Org Chem 53:1298–1307

    Article  CAS  Google Scholar 

  • Jagger J (1985) Solar-UV actions of living cells. Praeger Publishers, New York

    Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48

    Article  PubMed  Google Scholar 

  • Jones CS, Esquinazi E, Dorrestein PC, Gerwick WH (2011) Probing the in vivo biosynthesis of scytonemin, a cyanobacterial ultraviolet radiation sunscreen, through small scale stable isotope incubation studies and MALDI-TOF mass spectrometry. Bioorg Med Chem 19:6620–6627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jorge-Villar SE, Edwards HG (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113

    Article  CAS  PubMed  Google Scholar 

  • Jorge-Villar SE, Benning LG, Edwards HGM, AMASE team (2007) Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway. Geochem Trans 8:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlsson I (2011) Chemical and dermatological aspects of UV-absorbing compounds. University of Gothenburg, Dissertation

    Google Scholar 

  • Kruschel C, Castenholz RW (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hyper saline waters. FEMS Microbiol Ecol 27:53–72

    Article  CAS  Google Scholar 

  • Kylin H (1937) Über die Farbstoffe und die Farbe der cyanophyceen. Fysiogr Sällsk Förhandl 7:131–158

    Google Scholar 

  • Lao K, Glazer AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc Natl Acad Sci U S A 93:5258–5263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsui K, Nazifi E, Hirai Y, Wada N, Matsugo S, Sakamoto T (2012) The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity. J Gen Appl Microbiol 58:137–144

    Article  CAS  PubMed  Google Scholar 

  • McInnes C, Mezna M, Fischer PM (2005) Progress in the discovery of polo-like kinase inhibitors. Curr Top Med Chem 5:181–197

    Article  CAS  PubMed  Google Scholar 

  • McKay CP (1997) The search for life on Mars. Orig Life Evol Biosph 27:263–289

    Article  CAS  PubMed  Google Scholar 

  • Nadeau TL, Howard-Williams WC, Castenholz RW (1999) Effects of solar UV and visible irradiance on photosynthesis and vertical migration of Oscillatoria sp. (Cyanobacteria) in an Antarctic microbial mat. Aquat Microb Ecol 20:231–243

    Article  Google Scholar 

  • Nägeli C (1849) Gattungen Einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschriften Allg Schweiz Nat Ges 10:1–138

    Google Scholar 

  • Nägeli C., Schwenderer S (1877) Das Mikroskop, Leipzig: Willhelm Engelmann. 2nd ed.

  • Ninomiya M, Satoh H, Yamaguchi Y, Takenaka H, Koketsu M (2011) Antioxidative activity and chemical constituents of edible terrestrial alga Nostoc commune Vauch. Biosci Biotechnol Biochem 75:2175–2177

    Article  CAS  PubMed  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean Era. Photosynth Res 88:109–117

    Article  CAS  PubMed  Google Scholar 

  • Permyakov EA, Permyakov SE, Deikus GY, Morozova-Roche LA, Grishchenko VM, Kalinichenko LP, Uversky VN (2003) Ultraviolet illumination-induced reduction of alpha-lactalbumin disulfide bridges. Proteins 51:498–503

    Article  CAS  PubMed  Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ (2011) Microbial sunscreens. Microb Biotechnol 4:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SP, Häder DP, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9:79–90

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Häder DP (2002) Life under solar UV radiation in aquatic organisms. Adv Space Res 30:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Klisch M, Vaishampayan A, Häder DP (1999) Biochemical and spectroscopic characterization of the cyanobacteria Lyngbya sp. inhibiting Mango (Mangifera indica) trees: presence of an ultraviolet- absorbing pigment, scytonemin. Acta Protozool 38:291–298

    CAS  Google Scholar 

  • Sorrels CM, Proteau PJ, Gerwick WH (2009) Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl Environ Microb 75:4861–4869

    Article  CAS  Google Scholar 

  • Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F (2007) Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J Bacteriol 189:4465–4472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soule T, Garcia-Pichel F, Stout V (2009) Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UV radiation. J Bacteriol 191:4639–4646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA (2002a) Scytonemin- a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflammation Res 51:112–114

    Article  CAS  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman AC, Jackson JR, Mattern M, Gerwick WH, Jacobs RS, Marshall LA (2002b) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Therapeut 303:858–866

    Article  CAS  Google Scholar 

  • Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608

    Article  CAS  PubMed  Google Scholar 

  • Varnali T, Howell GM, Edwards HGM, Hargreaves MD (2009) Scytonemin: molecular structural studies of a key extremophilic biomarker for astrobiology. Int J Astrobiol 8:133–140

    Article  CAS  Google Scholar 

  • Vítek P, Edwards HG, Jehlicka J, Ascaso C, De los Ríos A, Valea S, Jorge-Villar SE, Davila AF, Wierzchos J (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos Transact A Math Phys Eng Sci 368:3205–3221

    Article  Google Scholar 

  • Wilson R, Monaghan P, Bowden SA, Parnell J, Cooper JM (2007) Surface-enhanced Raman signatures of pigmentation of cyanobacteria from within geological samples in a spectroscopic-microfluidic flow cell. Anal Chem 79:7036–7041

    Article  CAS  PubMed  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Su WH, Feng C, Yu DH, Cui C, Xu XY, Yu BZ (2007) Polo-like kinase 1 may regulate G2/M transition of mouse fertilized eggs by means of inhibiting the phosphorylation of Tyr15 of Cdc2. Mol Reprod Dev 74:1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang G, Kong C (2013) High expression of polo-like kinase 1 is associated with the metastasis and recurrence in urothelial carcinoma of bladder. Urol Oncol 31:1222–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Tandon, R., Kesarwani, S. et al. Emerging applications of cyanobacterial ultraviolet protecting compound scytonemin. J Appl Phycol 27, 1045–1051 (2015). https://doi.org/10.1007/s10811-014-0399-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0399-y

Keywords

Navigation