Skip to main content
Log in

Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The emission rates of eight volatile halogenated compounds by three tropical brown seaweed species collected from Cape Rachado, west coast Peninsular Malaysia, under different irradiances have been determined. A purge-and-trap sample preparation system with a gas chromatograph and mass-selective detector was used to measure a suite of halocarbons released by Sargassum binderi Sonder ex J. Agardh, Padina australis Hauck, and Turbinaria conoides (J. Agardh) Kützing. All species are widely distributed in Peninsular Malaysia, with S. binderi a dominant seaweed species at our survey site. Release of few halocarbons was found to be influenced by irradiance. Correlations were also observed between emission of certain halocarbons with photosynthetic activity, especially bromo-and iodinated compounds (0.6 < r <0.9; p < 0.01) suggesting that environmental factors such as light can affect the release of these volatile halogenated compounds by the seaweeds into the atmosphere. Compared with temperate and polar brown seaweeds, tropical species, such as T. conoides, may emit higher levels of bromoform, CHBr3, and other halocarbons. It is therefore important to investigate the contribution of tropical seaweeds towards the local atmospheric composition of halocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamsson K, Pedersén M (2000) Evidence of the natural production of trichloroethylene (reply to the comment by Marshall et al.). Limnol Oceanogr 45:520–522

    CAS  Google Scholar 

  • Abrahamsson K, Ekdahl A, Collén J, Pedersén M (1995) Marine algae—a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40:1321–1326

    Article  CAS  Google Scholar 

  • Aschmann J, Sinnhuber BM, Atlas EL, Schauffler SM (2009) Modeling the transport of very shortlived substances into the tropical upper troposphere and lower stratosphere. Atmos Chem Phys 9/23:9237–9247

    Article  CAS  Google Scholar 

  • Baker JM, Sturges WT, Sugier J, Sunnenberg G, Lovett AA, Reeves CE, Nightingale PD, Penkett SA (2000) Emissions of CHBr3, organochlorines and organoiodines from temperate macroalgae. Chemosphere-Global Change Sci 3:93–106

    Article  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944

    Article  CAS  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110

    Article  PubMed  CAS  Google Scholar 

  • Carpenter LJ, Malin G, Liss PS, Küpper FC (2000) Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal East Atlantic. Glob Biogeoch Cycles 14:1191–1204

    Article  CAS  Google Scholar 

  • Class T, Ballschmiter K (1988) Chemistry of organic traces in air, VIII, sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic Ocean. J Atmos Chem 6:35–46

    Article  CAS  Google Scholar 

  • Dummermuth AL, Karsten U, Fisch KM, König GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103–121

    Article  CAS  Google Scholar 

  • Ekdahl A, Pedersén M, Abrahamsson K (1998) A study of the diurnal variation of biogenic volatile halocarbons. Mar Chem 63:1–8

    Article  CAS  Google Scholar 

  • Gao K, Ji Y, Tanaka J (2004) Quantitative evaluation of wind effect during emersion on Porhpyra haitanensis (Rhodophyta), a farmed species in southern China. Fish Sci 70:710–712

    Article  CAS  Google Scholar 

  • Giese B, Laturnus F, Adams F, Wiencke C (1999) Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones. Environ Sci Technol 33:2432–2439

    Article  CAS  Google Scholar 

  • Goodwin KD, North WJ, Lidstrom ME (1997) Production of bromoform and dibromomethane by Giant Kelp: factors affecting release and comparison to anthropogenic bromine sources. Limnol Oceanogr 42:1725–1734

    Article  CAS  Google Scholar 

  • Gross W (1993) Peroxisomes in algae: their distribution, biochemical function, and phylogenetic importance. Prog Phycol Res 9:47–48

    CAS  Google Scholar 

  • Gschwend PM, McFarlane JK, Nerman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1023–1035

    Article  Google Scholar 

  • Hughes C, Malin G, Nightingale PD, Liss PS (2006) The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae. Limnol Oceanogr 51:2849–2854

    Article  CAS  Google Scholar 

  • Küpper FC, Schweigert N, Ar Gall E, Legendre JM, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involved extracellular haloperoxidase-mediated oxidation of iodide. Planta 207:163–171

    Article  Google Scholar 

  • La Barre S, Potin P, Leblanc C, Delgae L (2010) The halogenated metabolism of brown algae (Pheophyta), its biological importance and its environmental significance. Mar Drugs 8:988–1010

    Article  PubMed  Google Scholar 

  • Laturnus FC, Wiencke C et al (1998) Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae. Mar Env Res 45:285–294

    Article  CAS  Google Scholar 

  • Laturnus F, Giese B, Wiencke C, Adams FC (2000) Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae—the influence of abiotic factors. Fresenius J Anal Chem 368:297–302

    Article  PubMed  CAS  Google Scholar 

  • Laturnus F, Svensson T, Wiencke C (2010) Release of reactive organic halogens by the brown macroalga Saccharina latissima after exposure to ultraviolet radiation. Polar Res 29:379–384

    Article  CAS  Google Scholar 

  • Laube JC, Engel A, Bönisch H, Möbius T, Worton DR, Sturges WT, Grunow K, Schmidt U (2008) Contribution of very short-lived organic substances to stratospheric chlorine and bromine in the tropics—a case study. Atmos Chem Phys 8:7325–7334

    Article  CAS  Google Scholar 

  • Lin CY, Manley SL (2012) Bromoform production from seawater treated with bromoperoxidase. Limnol Oceanogr 57:1857–1866

    Article  CAS  Google Scholar 

  • Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256:193–194

    Article  PubMed  CAS  Google Scholar 

  • Manley SL (2002) Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochem 60:163–180

    Article  CAS  Google Scholar 

  • Manley SL, Barbero PE (2001) Physiological constraints on bromoform (CHBr3) production by Ulva lactuca (Chlorophyta). Limnol Oceanogr 46:1392–1399

    Article  CAS  Google Scholar 

  • Marshall RA, Harper DB, McRoberts WC, Dring MJ (1999) Volatile bromocarbons produced by Falkenbergia stages of Asparagopsis spp. (Rhodophyta). Limnol Oceanogr 44:1348–1352

    Article  CAS  Google Scholar 

  • McElroy MB, Salawitch RJ, Wofsy SC, Logan JA (1986) Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321:759–762

    Article  CAS  Google Scholar 

  • Mtolera MSO, Collén J, Pedersén M, Ekdahl A, Abrahamsson K, Semesi AK (1996) Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. Europ J Phycol 31:89–95

    Article  Google Scholar 

  • Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40:680–689

    Article  CAS  Google Scholar 

  • Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58:683–692

    Article  PubMed  CAS  Google Scholar 

  • Pedersén M, Collén J, Abrahamsson K, Ekdahl A (1996) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci Mar 60:257–263

    Google Scholar 

  • Phang SM (2006) Seaweed resources in Malaysia: current status and future prospects. Aquat Ecosyst Health Manag 9:185–202

    Article  Google Scholar 

  • Pyle JA, Warwick N, Yang X, Young PJ, Zeng G (2007) Climate/chemistry feedbacks and biogenic emissions. Phil Trans R Soc A 365:1727–1740

    Article  PubMed  CAS  Google Scholar 

  • Pyle JA, Ashfold MJ, Harris NRP, Robinson AD, Warwick NJ, Carver GD, Gostlow B, O’Brien LM, Manning AJ, Phang SM, Yong SE, Leong KP, Ung EH, Ong S (2011) Bromoform in the tropical boundary layer of the maritime continent during OP3. Atmos Chem Phys 11:529–542

    Article  CAS  Google Scholar 

  • Tan J, Lim PE, Phang SM (2013) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13–29

    Google Scholar 

  • Theiler R, Cook JC, Hager LP (1978) Halohydrocarbon synthesis of bromoperoxidase. Science 202:1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Tokarczyk R, Moore RM (1994) Production of volatile organohalogens by phytoplankton cultures. Geophys Res Lett 21:285–288

    Article  CAS  Google Scholar 

  • Wever R, Tromp MGM, Krenn BE, Marjani A, Van Tol M (1991) Brominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere. Environ Sci Tech 25:446–449

    Article  CAS  Google Scholar 

  • Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependant haloperoxidases. J Biol Chem 284:18577–18580

    Article  PubMed  CAS  Google Scholar 

  • Wolk CP (1968) Role of bromine in the formation of the refractile inclusions of the vesicle cells of the Bonnemaisoniaceae (Rhodophyta). Planta 78:371–375

    Article  CAS  Google Scholar 

  • Wong CL, Phang SM (2004) Biomass production of two Sargassum species at Cape Rachado, Malaysia. Hydrobiologia 512:79–88

    Article  Google Scholar 

  • Wuosmaa AM, Hager LP (1990) Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Universiti Malaya Research Grant (RG043/09SUS), Universiti Malaya Postgraduate Research Grant (PS 255/2009B and PS 302/2010B) and the FRGS Grant No. FP018-2012A. FSLK thanks the Institute of Research Management and Monitoring (IPPP), Universiti Malaya and the University of East Anglia for equipment support. Acknowledgements are also due to Li Lee Chew and Chong Ving Ching for their help with the statistical analysis, Jebri Sulaiman and Syed Azminnudin Syed Azizudin for their assistance throughout the sampling period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siew-Moi Phang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keng, F.SL., Phang, SM., Rahman, N.A. et al. Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances. J Appl Phycol 25, 1377–1386 (2013). https://doi.org/10.1007/s10811-013-9990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-9990-x

Keywords

Navigation