Skip to main content
Log in

The potential of photosynthetic aquatic species as sources of useful cellulose fibers—a review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Photosynthetic aquatic species, i.e., micro- and macroalgae and fresh or salt water plants, contain cellulose or other fibrous materials potentially suitable for paper making. Photosynthetic aquatic species having cellulosic or fibrous characteristics necessary for paper production were reviewed. These characteristics include overall fiber content, fiber size and morphology, and fiber composition. Several species of algae and aquatic plants are reported to possess cellulose in quantities greater than 10 % of total dry weight, and in general, the cellulose content in aquatic species is lower than that of most wood species. Commercial application of these aquatic algal or plant materials has been limited to simple milling, and no commercial applications utilizing processes to isolate the cellulosic fibers from these materials have yet been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasakis K, Ross AB, Jones JM (2011) Pyrolysis behavior of the main carbohydrates of brown macro-algae. Fuel 90:598–607

    Article  CAS  Google Scholar 

  • Bagnall L, Furman D, Hentges JF, Nolan WJ, Shirley RL (1974) Feed and fiber from effluent-grown water hyacinth. In: Wastewater use in the production of food and fiber. Proceedings, Oklahoma City, OK

  • Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr Polym 88:1258–1263

    Article  CAS  Google Scholar 

  • Black WAP (1950) The seasonal variation in the cellulose content of the common Scottish Laminariaceae and Fucaceae. J Mar Biol Assoc U K 29:379–387

    Article  Google Scholar 

  • Blumreisinger M, Meindl D, Loos E (1983) Cell wall composition of chlorococcal algae. Phytochemistry 22:1603–1604

    Article  CAS  Google Scholar 

  • Brundtland G (1987) Our common future. Paper presented at the World Commission on Environment and Development, Brussels

  • Chao KP, Su YC, Chen CS (1999) Chemical composition and potential for utilization of the marine alga Rhizoclonium sp. J Appl Phycol 11:525–533

    Article  CAS  Google Scholar 

  • Chao KP, Su YC, Chen CS (2000) Feasibility of utilizing Rhizoclonium in pulping and papermaking. J Appl Phycol 12:53–62

    Article  CAS  Google Scholar 

  • Ciancia M, Quintana I, Vizcarguenaga MI, Kasulin L, de Dios A, Estevez JM, Cerezo AS (2007) Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. Int J Bio Macromolec 41:641–649

    Article  CAS  Google Scholar 

  • Cronshaw J, Myers A, Preston RD (1958) A chemical and physical investigation of the cell walls of some marine algae. Biochim Biophys Acta 27:89–103

    Article  PubMed  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Dawes C, Chan M, Koch EW, Lazar A, Tomasko D (1987) Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquat Bot 27:195–201

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45:1885–1894

    Article  CAS  Google Scholar 

  • Donohoe BS, Selig MJ, Viamajala S, Vinzant TB, Adney WS, Himmel ME (2009) Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotech Bioeng 103:480–489

    Article  CAS  Google Scholar 

  • Donohoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresource Technol 102:11097–11104

    Article  CAS  Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37:882–889

    Article  CAS  Google Scholar 

  • Ek R, Gustafsson C, Nutt A, Iversen T, Nystrom C (1998) Cellulose powder from Cladophora sp. algae. J Mol Recog 11:263–265

    Article  CAS  Google Scholar 

  • EPA (2011) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2010. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Estevez JM, Fernandez PV, Kasulin L, Dupree P, Ciancia M (2009) Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19:212–228

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) FAOSTAT—Forestry database. Food and Agriculture Organization, UN, Rome

    Google Scholar 

  • Goswami T, Saikia CN (1994) Water hyacinth—a potential source of raw material for greaseproof paper. Bioresource Technol 50:235–238

    Article  CAS  Google Scholar 

  • Guarnieri MT, Laurens LM, Knoshaug EP, Chou YC, Donohoe BS, Pienkos PT (2012) Complex systems engineering: a case study for an unsequenced microalga. In: Patnaik R (ed) Engineering complex phenotypes in industrial strains. Wiley, New York

    Google Scholar 

  • Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag 27:117–129

    Article  PubMed  Google Scholar 

  • Gunter EA, Popeiko OV, Ovodov YS (2004) Isolation of polysaccharides from the callus culture of Lemna minor L. Appl Biochem Microbiol 40:80–83

    Article  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod Bioref 5:215–225

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220

    Article  CAS  Google Scholar 

  • Hemmasi AH, Samariha A, Tabei A, Nemati M, Khakifirooz A (2011) Study of morphological and chemical composition of fibers from Iranian sugarcane bagasse. Am-Eurasian J Agric Environ Sci 11:478–481

    CAS  Google Scholar 

  • Hinterstoisser B, Akerholm M, Salmen L (2003) Load distribution in native cellulose. Biomacromolecules 4:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Islam MA, Khan MA, Maisan AJ, Siddiqueullah M, Khan NA (1968) Chemical pulp for writing and printing paper from sea weeds (Typhus spp.) by the Kraft process and pilot plant production of paper. Scient Res 5:141–145

    CAS  Google Scholar 

  • Itoh T, O'Neil RM, Brown RM (1984) Interference of cell wall regeneration of Boergensenia forbesii protoplasts by tinopal LPW, a fluorescent brightening agent. Protoplasma 123:174–183

    Article  CAS  Google Scholar 

  • Kaihou S, Hayashi T, Otsuru O, Maeda M (1993) Studies on the cell-wall mannan of the siphonous green algae Codium latum. Carboh Res 240:207–218

    Article  CAS  Google Scholar 

  • Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fibre sources. Bioresource Technol 101:775–780

    Article  CAS  Google Scholar 

  • Kim WJ, Lee SE (2011) Method of manufacturing an opaque paper using genus Typha L. US Patent Application 20110036525A

  • Kiran E, Teksoy I, Guven KC, Guler E, Guner H (1980) Studies on seaweeds for paper production. Bot Mar 23:205–208

    CAS  Google Scholar 

  • Kirkman H, Kendrick G (1997) Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9:311–326

    Article  Google Scholar 

  • Knoshaug EP, Darzins A (2011) Algal biofuels: the process. Chem Engin Prog 107:37–47

    CAS  Google Scholar 

  • Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160

    Article  CAS  Google Scholar 

  • Ku KJ, Hong YH, Seo YB, Chung KS, Won MS, Song KB (2008) Application of edible red algae paper coated with green tea extract for shelf life extension of Kimbab. Food Sci Biotechnol 17:421–424

    Google Scholar 

  • Kumar A, Singh LK, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technol 100:3293–3297

    Article  CAS  Google Scholar 

  • Laksitoresmi DR, Kosasih Y, Miyasyiwi S, Darmansah I (2010) Prospects red algae (Gracilaria verrucosa) as the raw material of paper as innovative solution to face global warming. International Conference on Advanced Management Science 3: 78–81. doi:10.1109/ICAMS.2010.5553284

  • Leopold B, Marton R (1974) Papermaking potential of Zostera and Cladophora, two marine weeds. Sea Grant Institute, New York

    Google Scholar 

  • Leponiemi A (2011) Fibres and energy from wheat straw by simple practice, VTT publication: http://www.vtt.fi/inf/pdf/publications/2011/P767.pdf. Accessed 19 April 2012.

  • Liu D, Keesing JK, Xing Q, Shi P (2009) World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Poll Bull 58:888–895

    Article  CAS  Google Scholar 

  • Lundell F, Soderberg LD, Alfredsson PH (2011) Fluid mechanics of papermaking. Annu Rev Fluid Mech 43:195–217

    Article  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Env Int 33:122–138

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  PubMed  CAS  Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    Article  PubMed  CAS  Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharmaceut 269:433–442

    Article  CAS  Google Scholar 

  • Mihranyan A, Edsman K, Stromme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21:267–272

    Article  CAS  Google Scholar 

  • Mihranyan A, Nyholm L, Bennett AEG, Stromme M (2008) A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J Phys Chem B 112:12249–12255

    Article  PubMed  CAS  Google Scholar 

  • Mihranyan A (2010) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Poly Sci 119:2449–2460

    Article  Google Scholar 

  • Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol 99:2495–2500

    Article  CAS  Google Scholar 

  • Mossello AA, Harun J, Shamsi SRF, Resalati H, Tahir PM, Ibrahim R, Mohmamed AZ (2010) A review of literatures related to kenaf as an alternative for pulpwoods. Agricult J 5:131–138

    Article  Google Scholar 

  • Naylor GL, Russell-Wells B (1934) On the presence of cellulose and its distribution in the cell-walls of brown and red algae. Ann Bot 48:635–641

    CAS  Google Scholar 

  • Nicolucci C, Monegato A (1995) Paper comprising cellulose fiber and seaweed particles in integral form. US Patent 5472569

  • Nicolucci C, Monegato A (1996) Process for manufacturing paper from seaweed. US Patent 5567275

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  PubMed  CAS  Google Scholar 

  • Nolan WJ, Kirmse DW (1974) The papermaking properties of water hyacinth. Hyacinth Contr J 12:90–97

    CAS  Google Scholar 

  • Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117

    Article  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Bioref 3:431–440

    Article  CAS  Google Scholar 

  • Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341:591–597

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. PNNL-19944. Pacific Northwest National Laboratory, Richland, WA

  • Sakai M, Seto T, Kaneko M, Hada M, Kinomoto T (1996) Method for producing pulp from green algae. US Patent 5500086

  • Seo YB, Lee YW, Lee CH, Lee MW (2010a) Optical properties of red algae fibers. Ind Eng Chem Res 49:9830–9833

    Article  CAS  Google Scholar 

  • Seo YB, Lee YW, Lee CH, You HC (2010b) Red algae and their use in papermaking. Bioresour Tech 101:2549–2553

    Article  CAS  Google Scholar 

  • Shannon T, Shi B (2011) Tissue products containing microalgae materials. US Patent Application 2011303375A

  • Shen J, Song Z, Qian X, Ni Y (2011) Carbohydrate-based fillers and pigments for papermaking: a review. Carbohyd Polym 85:17–22

    Article  CAS  Google Scholar 

  • Siddhanta AK, Prasad K, Meena R, Prasad G, Mehta GK, Chhatbar MU, Oza MD, Kumar S, Sanandiya ND (2009) Profiling of cellulose content in Indian seaweed species. Bioresour Tech 100:6669–6673

    Article  CAS  Google Scholar 

  • Skjanes K, Lindblad P, Muller J (2007) BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolec Eng 24:405–413

    Article  CAS  Google Scholar 

  • Sridach W (2010) The environmentally benign pulping process of non-wood fibers. Suranaree J Sci Technol 17:105–120

    Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Talebizadeh A, Rezayati-Charani P (2010) Evaluation of pulp and paper making characteristics of rice stem fibers prepared by twin-screw extruder pulping. Bioresources 5:1745–1761

    CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Tech 84:1–5

    Article  CAS  Google Scholar 

  • Torbatinejad NM, Annison G, Rutherford-Markwick K, Sabine JR (2007) Structural constituents of the seagrass Posidonia australis. J Agri Food Chem 55:4021–4026

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19:245–254

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Tech 98:296–301

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Tech 100:6658–6660

    Article  CAS  Google Scholar 

  • Wood CG (1974) Seaweed extracts. A unique ocean resource. J Chem Edu 51:449–452

    Article  CAS  Google Scholar 

  • Wu Q, Liu X, Berglund LA (2003) Algae—from environmental threat to nanocomposite. 2nd International Conference on Eco-Composites, London, UK

  • Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901

    Article  CAS  Google Scholar 

  • You HC, Park JH (2004) Pulp and paper made from Rhodophyta and manufacturing method thereof. Eur Patent 1682721

Download references

Acknowledgments

We would like to thank David Johnson and Ashutosh Mittal for technical input. The funding for this project was provided by Kimberly-Clark Corporation, Neenah, WI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Knoshaug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoshaug, E.P., Shi, B., Shannon, T.G. et al. The potential of photosynthetic aquatic species as sources of useful cellulose fibers—a review. J Appl Phycol 25, 1123–1134 (2013). https://doi.org/10.1007/s10811-012-9958-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9958-2

Keywords

Navigation