Skip to main content
Log in

Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In order to better understand the alternation of generations that characterizes haploid–diploid life cycles, we assessed the existence of ecological differences between the two phases (haploid gametophyte and diploid tetrasporophyte) in Gracilaria chilensis, a rhodophyte with a typical Polysiphonia-type life cycle. We investigated the effect of light intensity and salinity on viability and growth of both phases at different ontogenetic stages: juveniles and adults. In our study, the survival of juvenile gametophytes (n) was higher than the survival of juvenile tetrasporophytes (2n) despite culture conditions; however, low salinity had greater effect on carpospores (2n) than on tetraspores (n). On the other hand, a complex interaction between salinity and light intensity within each life history phase generated observed differences between juvenile growth rates. Low light was shown to trigger early onset of alteration of the holdfast growing pattern. In addition, adult tetrasporophytes showed, despite the conditions, a faster vegetative growth than female and male gametophytes. These differences between phases could have led to the complete dominance of tetrasporophyte fragments of fronds observed in G. chilensis farms. We hypothesize that Chilean fishers could have unknowingly selected for tetrasporophyte thalli during domestication of the species, thus enhancing the natural trend of tetrasporophytes dominance already present in estuarine natural populations of free-floating plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akatsuka I (1986) Japanese Gelidiales (Rhodophyta), especially Gelidium. Oceanogr Mar Biol Annu Rev 24:171–263

    Google Scholar 

  • Bird CJ, McLachlan J (1986) The effect of salinity on distribution of species of Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot Mar 29:231–238

    Article  Google Scholar 

  • Bird CJ, McLachlan J, Oliveira EC (1986) Gracilaria chilensis sp. nov. (Rhodophyta, Gigartinales), from Pacific South America. Can J Bot 64:2928–2934

    Article  Google Scholar 

  • Buschmann AH, Correa JA, Westernmeier E, Hernandez-Gonzalez MDC, Normabuena R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220

    Article  Google Scholar 

  • Carmona R, Santos R (2006) Is there an ecophysiological explanation for the gametophyte–tetrasporophyte ratio in Gelidium sesquipedale (Rhodophyta)? J Phycol 42:259–269

    Article  Google Scholar 

  • Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW (2006) Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J Appl Phycol 18:269–277

    Article  Google Scholar 

  • Coelho S, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152–170

    Article  PubMed  CAS  Google Scholar 

  • Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specificity. J Phycol 27:448–459

    Article  Google Scholar 

  • Cronin G, Hay ME (1996) Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta). Bot Mar 39:395–399

    Article  CAS  Google Scholar 

  • Destombe C, Valero M, Vernet P, Couvet D (1989) What controls haploid–diploid ratio in the red alga, Gracilaria verrucosa? J Evol Biol 2:317–338

    Article  Google Scholar 

  • Destombe C, Godin J, Lefebvre C, Dehorter O, Vernet P (1992) Differences in dispersal abilities of haploid and diploid spores of Gracilaria verrucosa (Gracilariales, Rhodophyta). Bot Mar 35:93–98

    Article  Google Scholar 

  • Destombe C, Godin J, Nocher M, Richerd S, Valero M (1993) Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions. Hydrobiologia 260/261:131–137

    Article  Google Scholar 

  • Edding M, León C, Rattcliff A (1987) Growth of Gracilaria sp. in the laboratory. Hydrobiologia 151/152:375–379

    Article  Google Scholar 

  • Fierst J, ter Horst C, Kubler JE, Dudgeon S (2005) Fertilization success can drive patterns of phase dominance in complex life histories. J Phycol 41:238–249

    Article  Google Scholar 

  • Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492

    Article  PubMed  Google Scholar 

  • Garza-Sánchez F, Zertuche-González JA, Chapman DJ (2000) Effect of temperature and irradiance on the release, attachment, and survival of spores of Gracilaria pacifica Abbot (Rhodophyta). Bot Mar 43:205–212

    Article  Google Scholar 

  • Gómez I, Figueroa FL, Huovinen P, Ulloa N, Morales V (2005) Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture 244:369–382

    Article  Google Scholar 

  • Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M (2008) Genetic variation in wild and cultivated populations of the haploid–diploid red alga Gracilaria chilensis: how farming practices favour asexual reproduction and heterozygosity. Evolution 62:1500–1519

    Article  PubMed  Google Scholar 

  • Guimaraes M, Plastino EM, Oliveira EC (1999) Life history, reproduction and growth of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Bot Mar 42:481–486

    Article  Google Scholar 

  • Hannach G, Santelices B (1985) Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar Ecol Prog Ser 22:291–303

    Article  Google Scholar 

  • Hoyle MD (1978) Reproductive phenology and growth rates in two species of Gracilaria from Hawaii. J Exp Mar Biol Ecol 35:273–283

    Article  Google Scholar 

  • Hughes JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. Am Nat 154:306–320

    Article  PubMed  Google Scholar 

  • Hunt R (1982) Plant growth curves. Edward Arnold, London

    Google Scholar 

  • Juanes JA, Puente A (1993) Differential re-attachment capacity of isomorphic life history phases of Gelidium sesquipedale. Hydrobiologia 260/261:139–144

    Article  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kraan S, Barrington KA (2005) Commercial farming of Asparagopsis armata (Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species? J Appl Phycol 17:103–110

    Article  Google Scholar 

  • Lubchenco J, Cubit J (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687

    Article  Google Scholar 

  • Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. Bioessays 20:453–462

    Article  Google Scholar 

  • Martín LA, Zaixso ALB, Leonardi PI (2010) Biomass variation and reproductive phenology of Gracilaria gracilis in a Patagonian natural bed (Chubut, Argentina). J Appl Phycol 23:643–654

    Article  Google Scholar 

  • Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Patwary MU, van der Meer JP (1984) Growth experiments on autopolyploids of Gracilaria tikvahiae (Rhodophyceae). Phycologia 23:21–27

    Article  Google Scholar 

  • Pizarro A, Santelices B (1993) Environmental variation and large scale Gracilaria production. Hydrobiologia 260/261:357–363

    Article  Google Scholar 

  • Prieto I, Westermeier R, Muller D (1991) Variation of phenophases of Gracilaria chilensis Bird, McLaughlin and Oliveira (Rhodophyta, Gigartinales) in laboratory and field culture conditions: presence of mixed phases. Rev Chil Hist Nat 64:343–352

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raikar SV, Iima M, Fujita Y (2001) Effect of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104

    Google Scholar 

  • Raper JR, Flexer AS (1970) The road to diploidy with emphasis on a detour. Symp Soc Gen Microbiol 20:401–432

    Google Scholar 

  • Santelices B, Varela D (1995) Regenerative capacity of Gracilaria fragments: effects of size, reproductive state and position along the axis. J Appl Phycol 7:501–506

    Article  Google Scholar 

  • Santelices B, Vásquez J, Ohme U, Fonck E (1984) Managing wild crops of Gracilaria in Central Chile. Hydrobiologia 116:77–89

    Article  Google Scholar 

  • Santelices B, Westermeier R, Bobadilla M (1993) Effects of stock loading and planting distance on the growth and production of Gracilaria chilensis in rope culture. J Appl Phycol 5:517–524

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ, Schartschild A, Silliman BR (2009) Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316

    Article  Google Scholar 

  • Thornber CS (2006) Functional properties of the isomorphic biphasic algal life cycle. Integr Comp Biol 46:605–614

    Article  PubMed  Google Scholar 

  • Thornber C, Stachowicz JJ, Gaines S (2006) Tissue type matters: selective herbivory on different life history stages of an isomorphic alga. Ecology 87:2255–2263

    Article  PubMed  Google Scholar 

  • Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat Biol 3:251–264

    Article  Google Scholar 

  • West JA, Zuccarello GC (1999) Biogeography of sexual and asexual reproduction in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol Res 47:115–123

    Article  Google Scholar 

  • Westermeier R, Rivera PJ, Gómez I (1991) Cultivo de Gracilaria chilensis Bird, McLachlan y Oliveira, en la zona intermareal y submareal del estuario Cariquilda, Maullín, Chile. Rev Chil Hist Nat 64:307–321

    Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359

    Article  Google Scholar 

  • Zhang X, van der Meer JP (1987) A study of heterosis in diploid gametophytes of the marine red algae Gracilaria tikvahiae. Bot Mar 30:309–314

    Article  Google Scholar 

  • Zuccarello GC, Yeates PH, Wright JT, Bartlett J (2001) Population structure and physiological differentiation of haplotypes of Caloglossa leprieurii (Rhodophyta) in a mangrove intertidal zone. J Phycol 37:235–244

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Fondo Nacional de Desarrollo Científico y Tecnológico, Gobierno de Chile (FONDECYT #1090360) awarded to M-L. Guillemin. This study also constitutes a contribution from the Associated International Laboratory between France and Chile “Dispersal and Adaptation in Marine Species” (LIA DIAMS). We thank V. Flores, F. Rubio and N. Lavado for their help during the field sampling and the laboratory experiments and D. Roze and M. Valero for their helpful comments. We are also grateful to two anonymous reviewers for improving the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Guillemin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemin, ML., Sepúlveda, R.D., Correa, J.A. et al. Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta). J Appl Phycol 25, 215–224 (2013). https://doi.org/10.1007/s10811-012-9855-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9855-8

Keywords

Navigation