Skip to main content
Log in

Biotransformation of monoterpenes by immobilized microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This paper reports the biotransformation of carvone, limonene, β-pinene, thymol, and linalool using whole-cell-immobilized microalgal strains isolated from paddy fields of Iran. The strains was recognized by morphological characterization and assigned according to amplified 16S/18S rRNA genes by PCR. Ten unialgal strains including Chlorella, Oocystis, Chlamydomonas, and Synechococcus were immobilized in calcium alginate beads. After a 24-h incubation with substrates, characterization and identification of biotransformation products were done by GC/MS. None of the isolated immobilized microalgae converted β-pinene. In contrast, most of these strains biotransformed carvone and limonene to the related compounds. Some strains only reduced the C = C double bond to yield the dihydrocarvone isomers while others reduced the ketone to give the dihydrocarveol. The transformation ratio showed that Oocystis sp. MCCS 033 and Synechococcus sp. MCCS 035 produced dihydrocarvone isomers with the highest efficiency. Furthermore, limonene was converted into a mixture of five corresponding products and the maximum yield was 52.1% for carvone, the bioconverted product. Only one strain, Synechococcus sp. MCCS 034, oxidized thymol, and the product obtained from thymol was thymoquinone. Also, linalooloxide isomers and dihydrolinalool were obtained from linalool, and finally dihydrolinalool was the main product. These results showed a novel conversion pathway of linalool-forming dihydrolinalool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RP (2004) Identification of essential oil compounds by gas chromatography/mass spectroscopy. Allured Publishing Carol Stream, Illinois

    Google Scholar 

  • Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183:2298–2305

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee T, Bhattacharyya DK (2001) Biotransformation of Limonene by Pseudomonas putida. Appl Microbiol Biotechnol 55:541–546

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142

    Article  PubMed  Google Scholar 

  • Demyttenaere J, De Kimpe N (2001) Biotransformation of Terpenes by fungi study of the pathways involved. J Mol Catal B 11:265–270

    Article  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Reasearch, New Delhi

    Google Scholar 

  • Duetz WA, Fjällman AHM, Ren S, Jourdat C, Witholt B (2001) Biotransformation of d-limonene to (+)-trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl Environ Microbiol 67(6):2829–2832

    Article  CAS  PubMed  Google Scholar 

  • Farooq A, Hanson JR (1995) The microbiological hydroxylation of some pinane monoterpenoids by Cephalosporium aphidicola. Phytochemistry 40(3):815–817

    Article  CAS  Google Scholar 

  • Farooq A, Choudhary MI, Tahara S, Rahman AU, Can, Baser KH, Demirci F (2002) The microbial oxidation of (−)-β-pinene by Botrytis cinerea Z. Naturforsch 57c:686–690

    Google Scholar 

  • Ghasemi Y, Faramarzi MA, Arjmand Inalou M, Mohagheghzadeh A, Shokravi Sh, Morowvat MH (2007) Side-chain cleavage and C-20 ketone reduction of hydrocortisone by a natural isolate of Chroococcus dispersus. Ann Microbiol 57:577–581

    Article  CAS  Google Scholar 

  • Ghasemi Y, Mohagheghzadeh A, Moshavash M, Ostovan Z, Rasoul-Amini S, Morowvat MH, Ghoshoon MB, Raee MJ, Mosavi-Azam SB (2009) Biotransformation of monoterpenes by Oocystis pusilla. World J Microbiol Biotechnol 25:1301

    Article  CAS  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Morowvat MH, Raee MJ, Ghoshoon MB, Nouri F, Negintaji N, Parvizi R, Mosavi-Azam SB (2008) Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii culture. Molecules 13:2416–2425

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi Y, Tabatabaei Yazdi M, Shokravi S, Soltani N, Zarrini G (2003) Antifungal and antibacterial activity of paddy-field cyanobacteria from the north of Iran. J Sci IRI 14:203–209

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci U S A 84:5823–5827

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R et al (2003) Stereoselective biotransformation of Limonene and Limonene Oxide by cyanobacterium, Synechococcus sp. PCC 7942. J Biosci Bioeng 96:581–584

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Yasumune H, Fuchikami Y, Hirata T, Sattler I, Williams HJ, Scott AI (1997) Biotransformation of Geraniol, Nerol and (+)- and (−)-Carvone by suspension cultured cells of Catharanthus roseus. Phytochemistry 44:615–621

    Article  CAS  Google Scholar 

  • Hook IL, Ryan Sh, Sheridan H (2003) Biotransformation of aliphatic and aromatic ketones. Including several monoterpenoid ketones and their derivatives by five species of marine microalgae. Phytochemistry 63:31–36

    Article  CAS  PubMed  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2003) The fresh water algal flora of the British Isles, an identification guide to fresh water and terrestrial algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Mallick N (2004) Immobilization of Microalgae. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells. Humana Press, Totowa, pp 373–391

    Google Scholar 

  • Menéndez P, García C, Rodríguez P, Moyna P, Heinzen H (2002) Enzymatic systems involved in d-limonene biooxidation. Braz Arch Biol Technol 45:111–114

    Article  Google Scholar 

  • Misra G, Pavlostathis SG, Perdue EM, Araujo R (1996) Aerobic biodegradation of selected monoterpenes. Appl Microbiol Biotechnol 45:831–838

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  PubMed  Google Scholar 

  • Neilan BA, Jacobs D, Del Dot Th, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA Sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  CAS  PubMed  Google Scholar 

  • Noma Y, Akehi E, Miki N, Asakawa Y (1992) Biotransformation of terpene aldehydes, aromatic aldehydes and related compounds by Dunaliella tertiolecta. Phytochemistry 31:515–517

    Article  CAS  Google Scholar 

  • Noma Y, Takahashi H, Asakawa Y (1991) Biotransformation of terpene aldehydes by Euglena gracilis Z. Phytochemistry 30:1147–1151

    Article  CAS  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to a phylogeny. FASEB J 7:117–123

    Google Scholar 

  • Onken J, Berger RG (1999) Effects of R-(+)-limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J Biotechnol 69:163–168

    Article  CAS  PubMed  Google Scholar 

  • Rasoul-Amini S, Ghasemi Y, Morowvat MH, Mohagheghzadeh A (2009) PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem 116:129–136

    Article  CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:219–300

    Article  Google Scholar 

  • Shams-Ardakani M, Ghannadi A, Badr P, Mohagheghzadehm A (2005) Biotransformation of terpenes and related compounds by suspension culture of Glycyrrhiza glabra L. (Papilionaceae). Flavour and Fragrance Journal 20:141–144

    Article  CAS  Google Scholar 

  • Simmonds J, Robinson GK (1997) Novel biotransformations to produce aromatic and heterocyclic aldehydes. Enzyme Microb Technol 21:367–374

    Article  CAS  Google Scholar 

  • Speelmans G, Bijlsma A, Eggink G (1998) Limonene bioconversion to high concentrations of a single and stable product, Perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 50:538–544

    Article  CAS  Google Scholar 

  • Tecelão CSR, Van Keulen F, Da Fonseca MMR (2001) Development of a reaction system for the selective conversion of (−)-trans-Carveol to (−)-Carvone with whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B 11:719–724

    Article  Google Scholar 

  • Van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–466

    Article  Google Scholar 

  • Van Der Werf MJ, Boot AM (2000) Metabolism of Carveol and Dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146:1129–1141

    PubMed  Google Scholar 

  • Van Der Werf MJ, Swarts HJ, De Bont JAM (1999) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2102

    PubMed  Google Scholar 

  • Van Der Werf M, Keijzer PM, Van Der Schaft PH (2000) Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene. J Biotechnol 84:133–143

    Article  Google Scholar 

  • Van Rensburg E, Moleleki N, Van Der Walt JP, Botes PJ, Van Dyk MS (1997) Biotransformation of (+)limonene and (−)piperitone by yeasts and yeast-like fungi. Biotechnol Lett 19:779–782

    Article  Google Scholar 

  • Velankar HR, Heble MR (2003) Biotransformation of (l)-citronellal to (l)-citronellol by free and immobilized Rhodotorula minuta. Electron J Biotechnol 6:90–103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Research Council of Shiraz University of Medical Science, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasoul-Amini, S., Fotooh-Abadi, E. & Ghasemi, Y. Biotransformation of monoterpenes by immobilized microalgae. J Appl Phycol 23, 975–981 (2011). https://doi.org/10.1007/s10811-010-9625-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9625-4

Keywords

Navigation