Skip to main content
Log in

Effects of reactive oxygen species on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effects of reactive oxygen species (ROS) on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis were investigated. Addition of an organic carbon source to the medium resulted in increased mitochondrial activity, intracellular O2 - concentration and α-tocopherol productivity in E. gracilis W14ZUL (a chloroplast deficient mutant). α-Tocopherol productivity of the wild-type strain (with both mitochondria and chloroplast) was higher than that of the W14ZUL strain. In the case of the wild strain, the O2 generated in chloroplasts was efficiently scavenged by the α-tocopherol synthesized inside the chloroplast. In photoheterotrophic culture (with an organic carbon source), there was a positive correlation between α-tocopherol production and O2 generation. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) resulted in increased O2 generation and α-tocopherol productivity. These results indicate that the ROS generated in mitochondria and chloroplasts play important roles in α-tocopherol production by E. gracilis. The presence of chloroplasts and generation of intracellular ROS are important for efficient production of α-tocopherol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacerra MC, Albesa (2002) Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun 297:1003–1007

    Article  CAS  Google Scholar 

  • Bucke C (1968) Distribution and stability of α-tocopherol in subcellular fractions of broadbean leaves. Phytochemistry 7:693–700

    Article  CAS  Google Scholar 

  • Einicker-Lamas M, Morales MM, Miranda K, Garcia-Abreu J, Oliveira AJF, Silva FLS, Oliveira MM (2003) P-glycoprotein-like protein contributes to cadmium resistance in Euglena gracilis. J Comp Physiol B 173:559–564

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  • Gomez PI, Barriga A, Cifuentes AS, Gonzalez MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol Res 36(2):185–192

    PubMed  CAS  Google Scholar 

  • Hosotani K, Ohkochi T, Inui H, Yokota A, Nakano Y, Kitaoka S (1988) Photoassimilation of fatty-acid, fatty alcohols and sugars by Euglena gracilis Z. J Gen Microbiol 134:61–66

    CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Micobiol 59(3):867–873

    CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishino N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Kusmic C, Barsacchi R, Barsanti L, Gualtieri P, Passarelli V (1999) Euglena gracilis as source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559

    Article  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981) Localization of prenylquinones in the envelope of spinach-chloroplast. Biochim Biophys Acta 641:99–105

    Article  PubMed  CAS  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101. Plant Physiol 95:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishino N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410

    Article  CAS  Google Scholar 

  • Munne-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. CRC Crit Rev Plant Sci 21:31–57

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  CAS  Google Scholar 

  • Ogbonna JC, Tanaka H (1998) Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: a method of achieving continuous cell growth under light/dark cycles. Bioresour Technol 65:65–72

    Article  CAS  Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74

    Article  CAS  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002a) Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to α-tocopherol production. Biotechnol Lett 24:953–958

    Article  CAS  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002b) Interaction between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Kawanaka Y, Izumi Y, Inui H, Miyatake K, Kitaoka S, Nakano Y (1995) Mitochondrial alcohol dehydrogenase from ethanol-grown Euglena gracilis. J Biochem 117:1178–1182

    PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–S205

    PubMed  CAS  Google Scholar 

  • Ruggeri BA, Gray RJH, Wakins TR, Tomlins RI (1985) Effect of low temperature acclimation and oxygen stress on tocopherol production in Euglena gracilis Z. Appl Environ Microbiol 50:1404–1408

    PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil. Planta 190:363–368

    Article  CAS  Google Scholar 

  • Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1986) The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem 50:1063–1065

    CAS  Google Scholar 

  • Shigeoka S, Ishiko H, Nakano Y, Mitsunaga T (1992) Isolation and properties of γ-tocopherol methyltransferase in Euglena gracilis. Biochim Biophys Acta 1128:220–226

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290–299

    Article  PubMed  CAS  Google Scholar 

  • Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190

    Article  PubMed  CAS  Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312

    CAS  Google Scholar 

  • Threfall DR, Goodwin TW (1967) Nature, intracellular distribution and formation of terpenoid quinines in Euglena gracilis. Biochem J 103:573–588

    Google Scholar 

  • Tschiersch H, Ohmamm E (1993) Photoinhibition in Euglena gracilis: involvement of reactive oxygen species. Planta 191:316–323

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Rama Devi S, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Aoyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T., Ogbonna, J.C., Tanaka, H. et al. Effects of reactive oxygen species on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis . J Appl Phycol 21, 185–191 (2009). https://doi.org/10.1007/s10811-008-9349-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9349-x

Keywords

Navigation