Skip to main content
Log in

Impact of environmental pollution on cyanobacterial proline content

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study describes the toxic effects of different prominent aquatic pollutants—heavy metals (Cd & Pb), pesticides (alphamethrin and deltamethrin) and salt (NaCl)—on the intracellular proline content in the cyanobacterium, Westiellopsis prolifica–Janet strain–NCCU331. Despite a reduction in growth (measured as chlorophyll a content), the intracellular proline content increased in the presence of heavy metals, pesticides and high salt concentration. The intracellular cyanobacterial proline accumulation was more pronounced under salt stress than in the presence of pesticides and heavy metals. We have also compared whether or not anionic components influence heavy metal toxicity. It was found that the chlorides of Cd and Pb were more toxic than the NO3 and the order of toxicity was CdCl2 > PbCl2 > Cd (NO3)2 > Pb (NO3)2. Among pyrethroids, deltamethrin was more toxic than alphamethrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alia, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    CAS  Google Scholar 

  • Alia, Mohanty P, Matysik, J (2001) Effect of proline on the production of singlet oxygen. Amino Acid 21:195–200

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bassi R, Sharma SS (1993a) Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann Bot 72:151–154

    Article  CAS  Google Scholar 

  • Bassi R, Sharma SS (1993b) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33:1339–1342

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhunia AK, Roy D, Basu NK, Chakrabarti A, Banerjee SK (1991) Response of enzyme involved in the process of antioxidation towards benthiocarb and methylparathion in cyanobacterium Nostoc muscorum. Bull Environ Contam Toxicol 47:266–271

    Article  PubMed  CAS  Google Scholar 

  • Choudhary M, Jetly UK, Khan A, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline and malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis S-5. Ecotoxicol Environ Saf 66:204–209

    Article  PubMed  CAS  Google Scholar 

  • Da Silva EJ, Henrikson LE, Henrikson E (1975) Effect of pesticides on blue-green algae and nitrogen fixation. Arch Environ Contam Toxicol 3:193–204

    Article  Google Scholar 

  • Delauney A, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Farago ME, Mullen WA (1979) Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:93–94

    Article  Google Scholar 

  • Gadkari D (1988) Effect of some photosynthesis-inhibiting herbicides on growth and nitrogenase activity of a new isolate of cyanobacterium, Nostoc G3. J Basic Microbiol 28:419–426

    Article  CAS  Google Scholar 

  • Hanson AD, Burnet M (1994) Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In: Cherry JH (ed) Biochemical and cellular mechanisms of stress tolerance in plants. Springer, Berlin, pp 291–302

    Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Google Scholar 

  • Kishore KPB, Hong Z, Miao G, Hu C-AA, Verma DPS (1995) Over expression of Δ1 – pyrroline – 5-carboxylate synthetase increase proline overproduction and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Leena T, Fatma T (2000) Potential use of Phormidium for bioremediation of copper. Ind J Appl Pure Biol 15:83–86

    Google Scholar 

  • Low PS (1985) Molecular basis of the biological compatibility of nature’s osmolytes. In: Giller R, Gilles-Baillen M (eds) Transport processes, iono-and osmoregulation. Springer, Berlin, pp 469–477

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 193:315–322

    Google Scholar 

  • Mansour MMF, Salama KHA, Ali FZM, Abou Hadid AF (2005) Cell and plant responses to NaCl in Zea mays L. Cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  • Mishra AK, Pandey AB (1989) Toxicity of three herbicides to some nitrogen fixing cyanobacteria. Ecotoxicol Environ Saf 17:236–246

    Article  PubMed  CAS  Google Scholar 

  • Overnell J (1975) The effects of heavy metals on photosynthesis and loss of cell potassium in two species of marine algae Dunaliella tertiolecta and Phaeodactylum triornitum. Mar Biol 29:99–103

    Article  CAS  Google Scholar 

  • Ragan HA, Mast TJ (1990) Cadmium inhalation and male reproductive toxicity. Rev Environ Contam Toxicol 114:1–22

    PubMed  CAS  Google Scholar 

  • Ravindran CRM, Suguna S, Shanmugasundaram S (2000) Tolerance of Oscillatoria isolates to agrochemicals and pyrethroid components. Indian J Exp Biol 38:402–404

    PubMed  CAS  Google Scholar 

  • Rosko JJ, Rachlin JW (1975) The effect of copper, zinc, cobalt and manganese on the growth of marine diatom Nitzchia closterium. Bull Torr Bot Club 102:100–106

    Article  CAS  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of 3 stabilizing agents proline, betaine and trihalose on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  PubMed  CAS  Google Scholar 

  • Saladin GC, Clement, Magne C (2003) Stress effects of flumioxazin herbicide on grapevine (Vitis vinifera L.) grown in vitro. Plant Cell Rep 21:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Satish N, Tiwari GL (2000) Pesticide tolerance in Nostoc linckia in relation to the growth and nitrogen fixation. Proc Natl Acad Sci India 70:319–323

    Google Scholar 

  • Schubert H, Fulda S, Hagemann M (1993) Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6083. J Plant Physiol 142:291–295

    CAS  Google Scholar 

  • Shah K, Dubey RS (1998) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    Article  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solute. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Singh LJ, Tiwari DN (1988) Effect of selected rice field herbicides on photosynthesis, respiration and nitrogen assimilating enzyme system of paddy soil diazotrophic cyanobacteria. Pestic Biochem Physiol 31:120–128

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  • Stainer RY, Kunisawa R, Mandel M, Cohin-Bazire G (1971) Purification and properties of unicellular blue green algae (Order Chrococcales). Bact Rev 35:171–205

    Google Scholar 

  • Vonshak A, Richmond A (1981) Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiol 68:504–505

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Wu JT, Chang SC, Chen KS (1995) Enhancement of intracellular proline level in cells of Anacystis nidulans (cyanobacteria) exposed to deleterious concentrations of copper. J Phycol 31:376–379

    Article  CAS  Google Scholar 

  • Wu JT, Hsieh MT, Kow LC (1998) Role of proline accumulation in response to toxic copper in Chlorella sp.(Chlorophyceae) cells. J Phycol 34:13–117

    Article  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for D1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Grant Commission, India for financial support, and Dr. L. Rajendrakumar Singh for his help and facilities from the Jamia Millia Islamia (Central University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fatma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatma, T., Khan, M.A. & Choudhary, M. Impact of environmental pollution on cyanobacterial proline content. J Appl Phycol 19, 625–629 (2007). https://doi.org/10.1007/s10811-007-9195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-007-9195-2

Keywords

Navigation