Skip to main content
Log in

Flow regimes in a single dimple on the channel surface

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The boundaries of the domains of existence of flow regimes past single dimples made as spherical segments on a flat plate are determined with the use of available experimental results. Regimes of a diffuser-confuser flow, a horseshoe vortex, and a tornado-like vortex in the dimple are considered. Neither a horseshoe vortex nor a tornado-like vortex is observed in dimples with the relative depth smaller than 0.1. Transformations from the diffuser–confuser flow regime to the horseshoe vortex regime and from the horseshoe vortex flow to the tornado-like vortex flow are found to depend not only on the Reynolds number, but also on the relative depth of the spherical segment. Dependences for determining the boundaries of the regime existence domains are proposed, and parameters at which the experimental results can be generalized are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Khalatov, Heat Transfer and Hydrodynamics near Dimples on the Surface [in Russian], Inst. Thermophys., National Acad. of Sci. of Ukraine (2005).

  2. G. I. Kiknadze and V. G. Oleinikov, “Self-organization of tornado-like vortex structure in gas and liquid flows and enhancement of heat and mass transfer,” Preprint No. 227, Inst. Thermophys., Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1990).

  3. A. V. Shchukin, A. P. Kozlov, Ya. P. Chudnovsky, and R. S. Agachev, “Enhancement of heat transfer by spherical cavities: Review,” Izv. Ross. Akad. Nauk, Énergetika, No. 3, 47–64 (1998).

    Google Scholar 

  4. V. I. Terekhov and S. V. Kalinina, “Flow structure and heat exchange in the flow over a unit spherical cavity. State-of-the-art and problems,” Thermophys. Aeromech., 9, No. 4, 475–496 (2002).

    Google Scholar 

  5. Yu. F. Gortyshov, I. A. Popov, V. V. Olimpiev, A. V. Shchelchkov, and S. I. Kas’kov, Thermohydraulic Efficiency of Promising Methods of Heat-Transfer Enhancement in Channels of Heat-Transfer Equipment [in Russian], Kazan’ State Technical University, Kazan’ (2009).

    Google Scholar 

  6. B. V. Dzyubenko, Yu. A. Kuzma-Kichta, A. I. Leont’ev, M. M. Fedik, and L. P. Kholpanov, Enhancement of Heat and Mass Transfer at the Macro-, Micro-, and Nanoscales [in Russian], TSNIIatominform, Moscow (2008).

    Google Scholar 

  7. I. A. Gachechiladze, G. I. Kiknadze, Yu. K. Krasnov, et al., “Heat transfer during self-organization of tornadolike structures,” in: Heat Transfer, Proc. Int. Forum (Minsk, May 24–27, 1988), Inst. Heat Mass Transfer, Minsk (1988), pp. 83–125.

  8. Ya. P. Chudnovsky, “Vortex heat transfer enhancement and its applications,” in: Heat and Mass Transfer, Proc. of the Int. Symp. on Turbulence (Lisbon, Portugal, August 9–12, 1994), Begell-House Inc., Redding (1994), pp. 287–294.

  9. A. B. Ezerskii and V. G. Shekhov, “Visualization of the heat flux in flow over isolated spherical depressions,” Fluid Dyn., 24, No. 6, 959–962 (1989).

    Article  ADS  Google Scholar 

  10. V. S. Kesarev and A. P. Kozlov, “Flow structure and heat transfer in the flow past a hemispherical cavity by a turbulized air flow,” Vestn. Mosk. Gos. Tekh. Univ., Ser. Mashinostr., No. 1, 106–115 (1993).

    Google Scholar 

  11. A. V. Shchelchkov, “Thermohydraulic efficiency of heat-transfer enhancement in channels with spheroidal cavities,” Author’s Abstract, Candidate’s Dissertation in Tech. Sci., Kazan’ (2004).

  12. G. I. Kiknadze, I. A. Gachechiladze, V. G. Oleinikov, and V. V. Alekseev, “Mechanisms of self-organization of tornado-like jets in the flow around three-dimensional concave reliefs,” in: Heat and Mass Transfer and Hydrodynamics in Swirled Flows, Proc. 2nd Russian Conf. (Moscow, March 15–17, 2005), Izdat. Dom Mosk. Énerg. Inst., Moscow (2005), p. 104.

  13. A. A. Khalatov and V. N. Onishchenko, “Diagram of flow regimes in a single spherical cavity with a sharp edge,” Prom. Teplotekh., 27, No. 4, 5–10 (2005).

    Google Scholar 

  14. V. N. Afanas’ev and Ya. P. Chudnovsky, “Experimental study of the flow structure in a single dimple,” Vest n. Mosk. Gos. Tekh. Univ., Ser. Mashinostr., No. 1, 85–95 (1993).

    Google Scholar 

  15. G. I. Kiknadze, Yu. K. Krasnov, Yu. V. Chushkin, et al., Enhancement of Mass and Heat Transfer (Review of Results Obtained) [in Russian], TSNIIatominform, Moscow (1987).

    Google Scholar 

  16. Yu. M. Mshvidobadze, “Aerodynamics and heat transfer in a spherical cavity,” Author’s Abstract, Candidate’s Dissertation in Tech. Sci., Novosibirsk (1997).

  17. V. I. Terekhov, S. V. Kalinina, and Yu. M. Mshvidobadze, “Pressure field and resistance of a single cavity with sharp and rounded edges,” J. Appl. Mech. Tech. Phys., 34, No. 3, 331–338 (1993).

    Article  ADS  Google Scholar 

  18. V. I. Terekhov, S. V. Kalinina, and Yu. M. Mshvidobadze, “Convective heat transfer on the surface behind a spherical cavity,” Teplofiz. Aéromekh., 1, No. 1, 29–35 (1994).

    Google Scholar 

  19. M. Hiwada, T. Kawamura, J. Mabuchi, and M. Kumada, “Some characteristics of flow pattern and heat transfer past a cylindrical cavity,” Trans. JSME, 26, 1744 (1983).

    Google Scholar 

  20. É. P. Volchkov, S. V. Kalinina, I. I. Matrokhin, et al., “Some results of an experimental study of aerohydrody-namics and heat transfer on the surface with hemispherical cavities,” Sib. Fiz.-Tekh. Zh., No. 5, 3–9 (1992).

    Google Scholar 

  21. S. A. Isaev and A. I. Leont’ev, “Modeling of tornado-like enhancement of heat transfer: state of the art and prospects,” in: Heat and Mass Transfer and Hydrodynamics in Swirled Flows, Proc. 2nd Russian Conf. (Moscow, March 15–17, 2005), Izdat. Dom Mosk. Énerg. Inst., Moscow (2005), p. 106.

  22. A. A. Khalatov, A. Byerley, Soeng-Ki Min, and D. Ochoa, “Flow characteristics within and downstream of spherical and cylindrical dimple on a flat plate at low Reynolds number,” ASME Paper No. GT 2004-33656 (2004).

  23. S. A. Isaev, A. I. Leont’ev, Kh. T. Metov, and V. B. Kharchenko, “Modeling of the influence of viscosity on the tornado heat transfer in turbulent flow around a small hole on the plane,” J. Eng. Phys. Thermophys., 75, No. 4, 98–104 (2002).

    Google Scholar 

  24. V. N. Afanas’ev, A. I. Leont’ev, and Ya. P. Chudnovsky, “Heat transfer and friction on surfaces contoured with spherical cavities,” Preprint No. 1-90, Moscow State Technical University, Moscow (1990).

    Google Scholar 

  25. V. Ya. Borovoy and L. V. Yakovlev, “Heat transfer in supersonic flow over a single spherical cavity,” Fluid Dyn., 26, No. 5, 676–680 (1991).

    Article  ADS  Google Scholar 

  26. R. Snedeker and C. du P. Donaldson, “Observation of a bistable flow in a hemispherical cavity,” AIAA J., 4, No. 4, 735–736 (1966).

    Article  Google Scholar 

  27. V. I. Terekhov, S. V. Kalinina, and Yu. M. Mshvidobadze, “Experimental study of evolution of the flow in a channel with a hemispherical cavity,” Sib. Fiz.-Tekh. Zh., No. 1, 77–85 (1992).

    Google Scholar 

  28. A. V. Shchukin, A. V. Il’inkov, R. S. Agachev, et al., “Hydrodynamics in a hemispherical cavity at small flow velocities,” in: Intrachamber Processes in Power Engineering Facilities [in Russian], Kazan’ State Tech. Univ., Kazan’ (2001).

    Google Scholar 

  29. P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill. “Flow structure due to dimple depression on a channel surface,” Phys. Fluids, 13, No. 11, 3442–3451 (2001).

    Article  ADS  Google Scholar 

  30. N. Saired, A. V. Shchukin, A. P. Kozlov, et al., “Effect of streamwise curvature of the surface on hydrodynamics in a spherical cavity,” Izv. Vyssh. Ucheb. Zaved., Aviats. Tekh., No. 1, 40–44 (2000).

    Google Scholar 

  31. V. I. Terekhov, S. V. Kalinina, and Yu. M. Mshvidobadze, “Heat transfer from a spherical cavity located on a rectangular channel wall,” High Temp., 32, No. 2, 235–239 (1994).

    Google Scholar 

  32. P. R. Gromov, A. B. Zobnin, M. I. Rabinovich, and M. M. Sushchik, “Generation of solitary vortices in the flow past shallow spherical cavities,” Pisma Zh. Tekh. Fiz., 12, No. 21, 1323–1328 (1986).

    Google Scholar 

  33. A. I. Leont’ev, V. V. Olimpiev, E. V. Dilevskaya, and S. A. Isaev, “Essence of the mechanism of heat-transfer enhancement on the surface with spherical cavities,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 117–135 (2002).

    Google Scholar 

  34. G. I. Kiknadze, I. A. Gachechiladze, and V. V. Alekseev, Self-Organization of Tornado-Like Jets in Flows of Viscous Continuous Media and Enhancement of Heat and Mass Transfer Accompanying this Phenomenon [in Russian], Izdat. Dom Mosk. Energ. Inst., Moscow (2005).

  35. G. I. Kiknadze, Yu. K. Krasnov, N. F. Podymaka, and V. B. Khabenskii, “Self-organization of vortex structures in a water flow past a hemispherical cavity,” Dokl. Akad. Nauk SSSR, 291, No. 6, 1315–1318 (1986).

    Google Scholar 

  36. A. V. Shchukin, A. P. Kozlov, R. S. Agachev, and Ya. P. Chudnovsky, Enhancement of Heat Transfer by Spherical Cavities under the Action of Disturbing Factors [in Russian], Kazan’ State Tech. Univ., Kazan’ (2003).

    Google Scholar 

  37. Yu. F. Gortyshov, I. A. Popov, V. V. Olimpiev, and A. V. Shchelchkov, “Flow and heat transfer in channels with spheroidal intensifiers under forced convection of the gas,” in: Heat and Mass Transfer and Hydrodynamics in Swirled Flows, Proc. 2nd Russian Conf. (Moscow, March 15-17, 2005), Izdat. Dom Mosk. Energ. Inst., Moscow (2005), p. 102.

  38. A. V. Voskobiinik, “Formation of coherent vortex structures in swirled flows in spherical cavities,” Author’s Abstract, Candidate’s Dissertation in Tech. Sci., Kiev (2005).

  39. A. A. Khalatov, A. Byerley, Soeng-Ki Min, and D. Ochoa, “Application of advanced techniques to study fluid flow and heat transfer within and downstream of a single dimple,” in: Proc. of the 5th Minsk Int. Heat and Mass Transfer Forum (Minsk, Belarus, May 19–23, 2004), Inst. Heat and Mass Transfer, Minsk (2004), pp. 71–82.

  40. G. A. Dreitser, “Critical analysis of achievements in the field of heat-transfer enhancement in channels,” in: Proc. 2nd Russian National Conf. on Heat Transfer (Moscow, October 2630, 1998), Vol. 6: Enhancement of Heat Transfer, Moscow Energ. Inst., Moscow (1998), pp. 55-59.

  41. V. P. Musienko, “Experimental study of the flow past localized dimples,” Bionika, No. 26, 31–34 (1993).

    Google Scholar 

  42. V. V. Babenko, V. P. Musienko, V. I. Korobov, and A. Pyadishyus, “Selection of geometric parameters of a dimple generating perturbations in the boundary layer,” Bionika, Nos. 27-28, 42–47 (1998).

    Google Scholar 

  43. V. N. Turik, V. V. Babenko, V. A. Voskoboinik, and A. V. Voskoboinik, “Vortex motion in a hemispherical cavity on a plate surface,” Vestn. Nats. Tekh. Univ. Ukrainy (Kiev Politekh. Inst.), No. 48, 79–85 (2006).

    Google Scholar 

  44. K. N. Presser, “Empirische Gleichungen zur Berechnung der Stoff- und Warmeubertragung fur den Speziall der Abgerissenen Stromung,” Int. J. Heat Mass Transfer, 15, 2447–2471 (1972).

    Article  Google Scholar 

  45. K. Wieghardt, “Erhohung des turbulenten Reibungswiderstandes durch Oberflachenstorungen,” Tech. Berichte, 10, No. 9, 65–81 (1943).

    Google Scholar 

  46. G. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Terekhov or A. A. Khalatov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 6, pp. 78–88, November–December, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, G.V., Terekhov, V.I. & Khalatov, A.A. Flow regimes in a single dimple on the channel surface. J Appl Mech Tech Phy 51, 839–848 (2010). https://doi.org/10.1007/s10808-010-0105-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0105-z

Key words

Navigation