Skip to main content
Log in

Effect of Surface Conductivity on Magnetosphere Formation in Experiments with Laser Plasma flow over a Magnetic Dipole

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents the results of laboratory experiments with laser plasma flow around a magnetic dipole which model the extreme compression of the Earthś magnetosphere by the plasma generated by high-power coronal mass ejections. Data on the formation of an artificial magnetosphere, the boundary-layer structure, and the size of the magnetosphere as a function of the magnetic moment are given. It is shown that in the presence of a conducting dipole shell modeling the ionosphere, conditions are created for the flow of intense longitudinal currents in the polar regions. It is established that the longitudinal currents have little effect on the position of the plasma stagnation point and the transition layer but make a significant contribution to the disturbance of the magnetic field in the magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyal Palmer, “Particle and field measurements of the Starfish diamagnetic cavity,” J. Geophys. Res., 111, A12211 (2006).

    Google Scholar 

  2. P. Bernhardt, R. Roussel-Dupre, and M. Pongratz, et al., “Observations and theory of the AMPTE magnetotail barium releases,” J. Geophys. Res., 92, No. A6, 5777–5794 (1987).

    Article  ADS  Google Scholar 

  3. C. A. Nikitin and A. G. Ponomarenko, “Energetic criteria for artificial magnetosphere formation,” J. Appl. Mech. Tech. Phys., 36, No. 4, 483–487 (1995).

    Article  ADS  Google Scholar 

  4. Yu. P. Zakharov, S. A. Nikitin, and A. G. Ponomarenko, “Analysis and laboratory simulation of the global impact of anti-asteroid explosions on the Earthś magnetosphere,” Vychisl. Tekhnol., 1, No. 3, 36–43 (1996).

    Google Scholar 

  5. A. G. Ponomarenko, Yu. P. Zakharov, V. M. Antonov, et al., “Laser-plasma laboratory simulation of very strong and global impact of giant coronal mass ejections onto Earthś magnetosphere,” in: Abstr. Book of the 4th Int. Conf. on Inertial Fusion Sciences and Applications (Biarritz, France, Sept. 4-9, 2005), Univ. of Bordaux CELIA, Bordaux (2005), p. 287.

    Google Scholar 

  6. A. G. Ponomarenko, Yu. P. Zakharov, V. M. Antonov, et al., “Laboratory simulation of very strong magneto sphere compression by giant solar flare plasma, supplying a SEPs trapping and other world-wide effects,” in: Proc. of the IAUS233 Symp. on Solar Activity and Its Magnetic Origin of Int. Astronom. Union (Cairo, Egypt, 31 March to 4 April, 2006), Vol. 2, Cambridge Univ. Press, Cambridge (2006), pp. 389–390.

    Google Scholar 

  7. A. G. Ponomarenko, Yu. P. Zakharov, V. M. Antonov, et al., “Laser plasma experiments to simulate coronal mass ejections during giant solar flare and their strong impact onto magnetospheres,” IEEE Trans. Plasma Sci., 35, No. 4, 813–821 (2007).

    Article  ADS  Google Scholar 

  8. B. T. Tsurutani, W. D. Gonzalez, G. S. Lakhina, and S. Alex, “The extreme magnetic storm of 1–2 September 1859,” J. Geophys. Res., 108, No. A7, 1268 (2003).

    Article  Google Scholar 

  9. J. D. Davidson, C. Wang, J. C. Kasper, and Y. Liu, “Propagation of the October/November 2003 CMEs through the heliosphere,” Geophys. Res. Lett., 32, L03S03 (2005).

    Google Scholar 

  10. A. G. Ponomarenko, Yu. P. Zakharov, V. M. Antonov, et al., “Simulation of strong magnetospheric disturbances in the laser-produced plasma experiments,” Plasma Phys. Control. Fusion Res., 50, No. 7, 1–10 (2008).

    Google Scholar 

  11. A. J. Ridley, D. L. DeZeeuw, W. B. Manchester, and K. C. Hansen, “The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection,” Adv. Space Res., 38, 263–272 (2006).

    Article  ADS  Google Scholar 

  12. C. A. Nikitin and A. G. Ponomarenko, “Dynamics and spatial boundaries of retardation of the plasma cloud of an explosion in a dipole magnetic field,” J. Appl. Mech. Tech. Phys., No. 6, 745–751 (1993).

    ADS  Google Scholar 

  13. V. M. Antonov, Yu. P. Zakharov, A. V. Melekhov, et al., “Explosion with plasma quasitrapping in a dipole field,” J. Appl. Mech. Tech. Phys., 42, No. 6, 949–958 (2001).

    Article  Google Scholar 

  14. R. M. Winglee, J. Slough, T. Ziemba, and A. Goodson, “Mini-magnetosphere plasma propulsion: Tapping the energy of the solar wind for spacecraft propulsion,” J. Geophys. Res., 105, 21067–21077 (2000).

    Article  ADS  Google Scholar 

  15. E. Parker, “Shielding space explorers from cosmic rays,” Space Weather, 3, No. 8, S08004 (2005).

    Article  Google Scholar 

  16. S. I. Akasofu and S. Chapman, “Solar-Terrestrial Physics,” Clarendon, Oxford (1972).

    Google Scholar 

  17. Yu. P. Zakharov, V. M. Antonov, E. L. Boyarintsev, et al., “New type of laser-plasma experiments to simulate an extreme and global impact of giant coronal mass ejections onto Earthś magnetosphere,” J. Phys. Conf. Ser., 112, 042011 (2008).

    Google Scholar 

  18. T. Iijima and T. A. Potemra, “The amplitude distribution of field-aligned currents at northern high latitudes observed by TRIAD,” J. Geophys. Res., 81, 2165–2174 (1976).

    Article  ADS  Google Scholar 

  19. S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. J. Proskuryakov, “Explosive emission of electrons,” Usp. Fiz. Nauk, 115, No. 1, 101–117 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 5, pp. 25–34, September–October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, V.M., Boyarintsev, E.L., Zakharov, Y.P. et al. Effect of Surface Conductivity on Magnetosphere Formation in Experiments with Laser Plasma flow over a Magnetic Dipole. J Appl Mech Tech Phy 51, 340–348 (2010). https://doi.org/10.1007/s10808-010-0082-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0082-2

Key words

Navigation