Skip to main content
Log in

Experimental study and direct numerical simulation of the evolution of disturbances in a viscous shock layer on a flat plate

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Chang, M. F. Malik, and M. Y. Hussaini, “Effect of shock on the stability of hypersonic boundary layers,” AIAA Paper No. 90-1448 (1990).

  2. J. F. McKenzie and K. O. Westphal, “Interaction of linear waves with oblique shock waves,” Phys. Fluids, 11, 2350–2362 (1968).

    Article  MATH  ADS  Google Scholar 

  3. K. F. Stetson and R. L. Kimmel, “On hypersonic boundary-layer stability,” AIAA Paper No. 92-0737 (1992).

  4. H. L. Reed and W. S. Saric, “Linear stability theory applied to boundary layers,” Annu. Rev. Fluid Mech., 28, 389–428 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. Y. Ma and X. Zhong, “Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to freestream sound,” J. Fluid Mech., 488, 79–121 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. I. V. Egorov, V. G. Sudakov, and A. V. Fedorov, “Numerical simulation of propagation of disturbances in a supersonic boundary layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 33–44 (2004).

  7. M. C. Fisher, D. V. Maddalon, L. M. Weinstein, and R. D. Wagner (Jr.), “Boundary-layer Pitot and hot-wire surveys at M ≈ 20,” AIAA J., 9, No. 5, 826–834 (1971).

    ADS  Google Scholar 

  8. J. H. Kemp and F. K. Owen, “Nozzle wall boundary layer at Mach numbers 20 to 47,” AIAA J., 10, No. 7, 872–879 (1972).

    ADS  Google Scholar 

  9. J. A. Smith and J. F. Driscoll, “The electron-beam fluorescence technique for measurements in hypersonic turbulent flows,” J. Fluid Mech., 72, No. 4, 695–719 (1975).

    Article  ADS  Google Scholar 

  10. S. J. Cowley and Ph. Hall, “On the instability of hypersonic flow past a wedge,” J. Fluid Mech., 214, 17–42 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. N. D. Blackaby, S. J. Cowley, and Ph. Hall, “On the instability of hypersonic flow past a flat plate,” J. Fluid Mech., 247, 369–416 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C. W. Whang and X. Zhong, “Nonlinear interaction of Gortler and second shear modes in hypersonic boundary layers,” AIAA Paper No. 2000-0536 (2000).

  13. X. Zhong, “Leading-edge receptivity to free-stream disturbances waves for hypersonic flow over a parabola,” J. Fluid Mech., 441, 315–367 (2001).

    Article  MATH  ADS  Google Scholar 

  14. J. Laufer, “Some statistical properties of the pressure field radiated by a turbulent boundary layer, ” Phys. Fluids, 7, No. 8, 1191–1197 (1964).

    Article  MATH  ADS  Google Scholar 

  15. K. W. Roger, G. B. Wainwright, and K. J. Touryan, “Impact and static pressure measurements in high speed flows with transitional Knudsen numbers,” in: Rarefied Gas Dynamics, Vol. 2, Academic Press, New York (1966), pp. 151–174.

    Google Scholar 

  16. S. G. Mironov and A. A. Maslov, “An experimental study of density waves in hypersonic shock layer on a flat plate,” Phys. Fluids, A, 12, No. 6, 1544–1553 (2000).

    Article  ADS  MATH  Google Scholar 

  17. A. Suresh and H. T. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta stepping, ” J. Comput. Phys., 136, Part 1, 83–99 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A. N. Kudryavtsev and D. V. Khotyanovsky, “Numerical simulation of compressible shear layer development with weighted ENO schemes,” in: Computational Fluid Dynamics, Proc. of the ECCOMAS Conf. (Athens, Greece, September 7–11, 1998), Vol. 1, Part 2, John Wiley and Sons, Chichester (1998), pp. 900–905.

    Google Scholar 

  19. M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  20. A. A. Maslov, S. G. Mironov, and V. M. Aniskin, “Hypersonic shear layer stability experiments, ” J. Spacecraft Rockets, 42, No. 6, 999–1004 (2005).

    Article  ADS  Google Scholar 

  21. V. M. Aniskin and S. G. Mironov, “Evolution of controlled disturbances in the shock layer on the compression surface,” J. Appl. Mech. Tech. Phys., 44, No. 5, 626–633 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryavtsev, A.N., Mironov, S.G., Poplavskaya, T.V. et al. Experimental study and direct numerical simulation of the evolution of disturbances in a viscous shock layer on a flat plate. J Appl Mech Tech Phys 47, 617–627 (2006). https://doi.org/10.1007/s10808-006-0097-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-006-0097-x

Key words

Navigation