Skip to main content
Log in

Plastic flow instability at the necking stage in zirconium alloys

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Regular features in plastic-strain macrolocalization are examined at the parabolic stage of strain hardening in the É635 and Zircaloy-2 zirconium alloys. Instability of the plastic flow is observed, which is manifested as a periodic variation of space-time distributions of local strain as revealed by means of speckle interferometry. The data obtained are discussed within the framework of a synergetic model for the plastic flow evolution at the final stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Zuev and V. I. Danilov, “A self-excited wave model of plastic strain in zirconium,” Philos. Mag., Ser. A, 79, No. 1, 43–57 (1999).

    Article  Google Scholar 

  2. L. B. Zuev, V. I. Danilov, and B. S. Semukhin, “Space-time ordering in plastically flowing solids, ” Usp. Fiz. Metal., 3, No. 3, 237–304 (2002).

    Google Scholar 

  3. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering [in Russian], Énergiatomizdat, Moscow (1994).

    Google Scholar 

  4. T. M. Poletika, V. I. Danilov, G. N. Narimanova, et al., “Plastic flow localization in a Zr-1% Nb alloy under tension,” Zh. Tekh. Fiz., 72, No. 9, 57–62 (2002).

    Google Scholar 

  5. T. M. Poletika, G. N. Narimanova, S. V. Kolosov, and L. B. Zuev, “Plastic flow localization in commercial zirconium alloys,” Appl. Mech. Tech. Phys., 44, No. 2, 262–270 (2003).

    Article  Google Scholar 

  6. L. B. Zuev, V. I. Danilov, T. M. Poletika, and S. A. Barannikova, “Plastic deformation localization in commercial Zr-base alloys,” Int. J. Plastic, 20, No. 5, 1227–1249 (2004).

    Article  Google Scholar 

  7. P. J. Wray, “Tensile plastic instability at an elevated temperature and its dependence upon strain rate,” J. Appl. Phys., 41, No. 8, 3347–3352 (1970).

    Article  Google Scholar 

  8. O. A. Kaibyshev, Superplasticity in Commercial Alloys [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  9. V. V. Rybin, “Physical model for the loss of mechanical stability and necking,” Fiz. Metal. Metalloved., 44, No. 3, 623–632 (1977).

    Google Scholar 

  10. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  11. B. K. Barakhtin, V. I. Vladimirov, S. A. Ivanov, et al., “Periodic variation of the defect structure under plastic strain,” Fiz. Tverd. Tela, 28, No. 7, 2250–2252 (1987).

    Google Scholar 

  12. A. A. Presnyakov, Plastic Strain Localization [in Russian], Mashinostroenie, Moscow (1983).

    Google Scholar 

  13. A. Yu. Loskutov, Introduction into Synergetics [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  14. V. I. Arnol’d, Catastrophe Theory [in Russian], URSS Publ., Moscow (2004).

    Google Scholar 

  15. S. A. Barannikova, V. I. Danilov, and L. B. Zuev, “Plastic strain localization in single-crystal and polycrystalline Fe-Si alloys in tension,” Zh. Tekh. Fiz., 74, No. 10, 52–56 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 141–149, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poletika, T.M., Kolosov, S.V., Narimanova, G.N. et al. Plastic flow instability at the necking stage in zirconium alloys. J Appl Mech Tech Phys 47, 426–432 (2006). https://doi.org/10.1007/s10808-006-0073-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-006-0073-5

Key words

Navigation