Skip to main content

Advertisement

Log in

Re-conceptualizing ASD Within a Dimensional Framework: Positive, Negative, and Cognitive Feature Clusters

  • Commentary
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Introduction of the National Institute of Mental Health’s Research Domain Criteria and revision of diagnostic classification for Autism Spectrum Disorder in the latest diagnostic manual call for a new way of conceptualizing heterogeneous ASD features. We propose a novel conceptualization of ASD, borrowing from the schizophrenia literature in clustering ASD features along positive, negative, and cognitive dimensions. We argue that this dimensional conceptualization can offer improved ability to classify, diagnose, and treat, to apply and predict response to treatment, and to explore underlying neural and genetic alterations that may contribute to particular feature clusters. We suggest the proposed conceptualization can advance the field in a manner that may prove clinically and biologically useful for understanding and addressing heterogeneity within ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andari, E., Duhamel, J. R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107(9), 4389–4394. doi:10.1073/pnas.0910249107.

    Article  Google Scholar 

  • Andreasen, N. C. (1984). Scale for the assessment of positive symptoms. Iowa City: University of Iowa.

    Google Scholar 

  • Andreasen, N. C. (1989). Scale for the assessment of negative symptoms (SANS): Conceptual and theoretical foundations. The British Journal of Psychiatry, (7), 49–58.

  • Andreasen, N. C., & Olsen, S. (1982). Negative v positive schizophrenia: definition and validation. Archives of General Psychiatry, 39(7), 789.

    Article  PubMed  Google Scholar 

  • Angrist, B., Rotrosen, J., & Gershon, S. (1980). Differential effects of amphetamine and neuroleptics on negative vs. positive symptoms in schizophrenia. Psychopharmacology (Berl), 72(1), 17–19.

    Article  Google Scholar 

  • Association, A. P. (2013). DSM 5: American Psychiatric Association.

  • Association AP. (1968). DSM-II. Diagnostic and Statistical Manual of Mental Disorders (2nd ed.). USA: American Psychiatric Association.

    Google Scholar 

  • Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. Journal of Autism and Developmental Disorders, 29(3), 213–224.

    Article  PubMed  Google Scholar 

  • Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321–353. doi:10.1146/annurev.clinpsy.1.102803.143959.

    Article  PubMed  Google Scholar 

  • Barch, D. M., Bustillo, J., Gaebel, W., Gur, R., Heckers, S., Malaspina, D., & Carpenter, W. (2013). Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: relevance to DSM-5. Schizophrenia Research, 150(1), 15–20. doi:10.1016/j.schres.2013.04.027.

    Article  PubMed  Google Scholar 

  • Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci, 16(1), 27–34. doi:10.1016/j.tics.2011.11.015.

    Article  PubMed  Google Scholar 

  • Barton, M. L., Dumont-Mathieu, T., & Fein, D. (2012). Screening young children for autism spectrum disorders in primary practice. Journal of Autism and Developmental Disorders, 42(6), 1165–1174. doi:10.1007/s10803-011-1343-5.

    Article  PubMed  Google Scholar 

  • Bernier, R., Golzio, C., Xiong, B., Stessman, H. A., Coe, B. P., Penn, O., & Eichler, E. E. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158(2), 263–276. doi:10.1016/j.cell.2014.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanchard, J. J., & Cohen, A. S. (2006). The structure of negative symptoms within schizophrenia: implications for assessment. Schizophrenia Bulletin, 32(2), 238–245. doi:10.1093/schbul/sbj013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleuler, E. (1950). Dementia praecox or the group of schizophrenias.

  • Bora, E., & Murray, R. M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40(4), 744–755. doi:10.1093/schbul/sbt085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruining, H., de Sonneville, L., Swaab, H., de Jonge, M., Kas, M., van Engeland, H., & Vorstman, J. (2010). Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes. PLoS ONE, 5(5), e10887. doi:10.1371/journal.pone.0010887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunelin, J., Mondino, M., Haesebaert, F., Saoud, M., Suaud-Chagny, M. F., & Poulet, E. (2012). Efficacy and safety of bifocal tDCS as an interventional treatment for refractory schizophrenia. Brain Stimul, 5(3), 431–432. doi:10.1016/j.brs.2011.03.010.

    Article  PubMed  Google Scholar 

  • Brunsdon, V. E., & Happé, F. (2014). Exploring the ‘fractionation’ of autism at the cognitive level. Autism, 18(1), 17–30. doi:10.1177/1362361313499456.

    Article  PubMed  Google Scholar 

  • Cascio, C. J., Foss-Feig, J. H., Heacock, J., Schauder, K. B., Loring, W. A., Rogers, B. P., & Bolton, S. (2014). Affective neural response to restricted interests in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(2), 162–171. doi:10.1111/jcpp.12147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Johnston, J., Kinon, B., Stauffer, V., Succop, P., Marques, T., & Ascher-Svanum, H. (2013). The longitudinal interplay between negative and positive symptom trajectories in patients under antipsychotic treatment: a post hoc analysis of data from a randomized, 1-year pragmatic trial. BMC Psychiatry, 13, 320. http://www.biomedcentral.com/1471-244X/13/320.

  • Chien, W. T., & Yip, A. L. (2013). Current approaches to treatments for schizophrenia spectrum disorders, part I: an overview and medical treatments. Neuropsychiatr Dis Treat, 9, 1311–1332. doi:10.2147/NDT.S37485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle, J. T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and Molecular Neurobiology, 26(4–6), 365–384.

    PubMed  Google Scholar 

  • Delvecchio, G., Fossati, P., Boyer, P., Brambilla, P., Falkai, P., Gruber, O., & Frangou, S. (2012). Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: A voxel-based meta-analysis of functional magnetic resonance imaging studies. European Neuropsychopharmacology, 22(2), 100–113. doi:10.1016/j.euroneuro.2011.07.003.

    Article  PubMed  Google Scholar 

  • Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., & Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophrenia Research, 158(1–3), 156–162. doi:10.1016/j.schres.2014.06.034.

    Article  PubMed  Google Scholar 

  • Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111. doi:10.1016/j.conb.2007.01.009.

    Article  PubMed  Google Scholar 

  • Goff, D. C., Freudenreich, O., & Evins, A. E. (2001). Augmentation strategies in the treatment of schizophrenia. CNS Spectr, 6(11), 904, 907–911.

  • Goff, D. C., Leahy, L., Berman, I., Posever, T., Herz, L., Leon, A. C., & Lynch, G. (2001b). A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. Journal of Clinical Psychopharmacology, 21(5), 484–487.

    Article  PubMed  Google Scholar 

  • Grzadzinski, R., Huerta, M., & Lord, C. (2013). DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol Autism, 4(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Happe, F. (2011). Criteria, categories, and continua: autism and related disorders in DSM-5. Journal of the American Academy of Child and Adolescent Psychiatry, 50(6), 540–542.

    Article  PubMed  Google Scholar 

  • Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220. doi:10.1038/nn1770.

    Article  PubMed  Google Scholar 

  • Harvey, P. D., & Keefe, R. S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. American Journal of Psychiatry, 158(2), 176–184.

    Article  PubMed  Google Scholar 

  • Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., & Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.

    Article  PubMed  Google Scholar 

  • Jablensky, A. (2006). Subtyping schizophrenia: implications for genetic research. Mol Psychiatry, 11(9), 815–836. doi:10.1038/sj.mp.4001857.

    Article  PubMed  Google Scholar 

  • Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol, 10(2), 74–81. doi:10.1038/nrneurol.2013.278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–278.

    Article  PubMed  Google Scholar 

  • Kempton, M. J., Salvador, Z., Munafò, M. R., et al. (2011). Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690. doi:10.1001/archgenpsychiatry.2011.60.

    Article  PubMed  Google Scholar 

  • Kenworthy, L., Anthony, L. G., Naiman, D. Q., Cannon, L., Wills, M. C., Luong-Tran, C., & Wallace, G. L. (2014). Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. Journal of Child Psychology and Psychiatry, 55(4), 374–383. doi:10.1111/jcpp.12161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koegel, R. L., Vernon, T. W., & Koegel, L. K. (2009). Improving social initiations in young children with autism using reinforcers with embedded social interactions. Journal of Autism and Developmental Disorders, 39(9), 1240–1251. doi:10.1007/s10803-009-0732-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krystal, J. H., D’Souza, D. C., Mathalon, D., Perry, E., Belger, A., & Hoffman, R. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl), 169(3–4), 215–233.

    Article  Google Scholar 

  • Leucht, S., Corves, C., Arbter, D., Engel, R., Li, C., & Davis, J. (2009). Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet, 373, 31–41. doi:10.1016/S0140-6736(08)61764-X.

    Article  PubMed  Google Scholar 

  • Levkovitz, Y., Mendlovich, S., Riwkes, S., Braw, Y., Levkovitch-Verbin, H., Gal, G., & Kron, S. (2010). A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. Journal of Clinical Psychiatry, 71(2), 138–149. doi:10.4088/JCP.08m04666yel.

    Article  PubMed  Google Scholar 

  • Linscott, R. J., & van Os, J. (2010). Systematic reviews of categorical versus continuum models in psychosis: evidence for discontinuous subpopulations underlying a psychometric continuum. Implications for DSM-V, DSM-VI, and DSM-VII. Annual Review of Clinical Psychology, 6, 391–419. doi:10.1146/annurev.clinpsy.032408.153506.

    Article  PubMed  Google Scholar 

  • Lisman, J. (2012). Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Current Opinion in Neurobiology, 22(3), 537–544. doi:10.1016/j.conb.2011.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, C. (1995). Follow-up of two-year-olds referred for possible autism. J. Child Psychol. Psychiat., 36(8), 1365–1382.

    Article  PubMed  Google Scholar 

  • Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., & Risi, S. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313. doi:10.1001/archgenpsychiatry.2011.148.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., & Sanchez, J. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28(3), 266–277. doi:10.1016/j.ridd.2006.01.004.

    Article  PubMed  Google Scholar 

  • Mahjouri, S., & Lord, C. E. (2012). What the DSM-5 portends for research, diagnosis, and treatment of autism spectrum disorders. Curr Psychiatry Rep, 14(6), 739–747. doi:10.1007/s11920-012-0327-2.

    Article  PubMed  Google Scholar 

  • Marder, S. R. (2011). Lessons from MATRICS. Schizophrenia Bulletin, 37(2), 233–234. doi:10.1093/schbul/sbq166.

    Article  PubMed  PubMed Central  Google Scholar 

  • McPartland, J. C., Coffman, M., & Pelphrey, K. A. (2011). Recent advances in understanding the neural bases of autism spectrum disorder. Current Opinion in Pediatrics, 23(6), 628–632. doi:10.1097/MOP.0b013e32834cb9c9.

    Article  PubMed  PubMed Central  Google Scholar 

  • McPheeters, M. L., Warren, Z., Sathe, N., Bruzek, J. L., Krishnaswami, S., Jerome, R. N., & Veenstra-Vanderweele, J. (2011). A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics, 127(5), e1312–e1321. doi:10.1542/peds.2011-0427.

    Article  PubMed  Google Scholar 

  • Mohr, P. E., Cheng, C. M., Claxton, K., Conley, R. R., Feldman, J. J., Hargreaves, W. A., & Neumann, P. J. (2004). The heterogeneity of schizophrenia in disease states. Schizophrenia Research, 71(1), 83–95. doi:10.1016/j.schres.2003.11.008.

    Article  PubMed  Google Scholar 

  • Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72(1), 29–39. doi:10.1016/j.schres.2004.09.007.

    Article  PubMed  Google Scholar 

  • Ornitz, E. M. (1969). Disorders of perception common to early infantile autism and schizophrenia. Comprehensive Psychiatry, 10(4), 259–274.

    Article  PubMed  Google Scholar 

  • Rabinowitz, J., Levine, S. Z., Garibaldi, G., Bugarski-Kirola, D., Berardo, C. G., & Kapur, S. (2012). Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophrenia Research, 137(1–3), 147–150. doi:10.1016/j.schres.2012.01.015.

    Article  PubMed  Google Scholar 

  • Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 1022–1029. doi:10.1093/schbul/sbn044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubenstein, J., & Merzenich, M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2, 255–267. doi:10.1046/j.1601-183X.2003.00037.x.

    Article  Google Scholar 

  • Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 7–16. doi:10.1016/j.biopsych.2005.06.007.

    Article  PubMed  Google Scholar 

  • Siever, L. J., Kalus, O. F., & Keefe, R. S. (1993). The boundaries of schizophrenia. Psychiatric Clinics of North America, 16(2), 217–244.

    PubMed  Google Scholar 

  • Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11(7), 490–502.

    Article  PubMed  PubMed Central  Google Scholar 

  • South, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. Journal of Autism and Developmental Disorders, 35(2), 145–158.

    Article  PubMed  Google Scholar 

  • Tamminga, C. A., & Holcomb, H. H. (2005). Phenotype of schizophrenia: a review and formulation. Mol Psychiatry, 10(1), 27–39. doi:10.1038/sj.mp.4001563.

    Article  PubMed  Google Scholar 

  • Tandon, R. (2012). The nosology of schizophrenia: toward DSM-5 and ICD-11. Psychiatric Clinics of North America, 35(3), 557–569. doi:10.1016/j.psc.2012.06.001.

    Article  PubMed  Google Scholar 

  • Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., & Carpenter, W. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10. doi:10.1016/j.schres.2013.05.028.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168. doi:10.1016/j.neuron.2006.09.020.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113. doi:10.1038/nrn2774.

    Article  PubMed  Google Scholar 

  • Volkmar, F. R., & McPartland, J. C. (2014). From Kanner to DSM-5: autism as an evolving diagnostic concept. Annual Review of Clinical Psychology, 10, 193–212. doi:10.1146/annurev-clinpsy-032813-153710.

    Article  PubMed  Google Scholar 

  • Willemsen-Swinkels, S. H. N., & Buitelaar, J. K. (2002). The autistic spectrum: subgroups, boundaries, and treatment. Psychiatric Clinics of North America, 25(4), 811–836.

    Article  PubMed  Google Scholar 

  • Wolff, J. J., Hupp, S. C., & Symons, F. J. (2013). Brief report: Avoidance extinction as treatment for compulsive and ritual behavior in autism. Journal of Autism and Developmental Disorders, 43(7), 1741–1746. doi:10.1007/s10803-012-1721-7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded by grants from the Brain and Behavior Research Foundation NARSAD Young Investigator Award (JHF), Autism Science Foundation Research Mini Enhancement Grant (JHF), NIMH R01 MH107426-01 (JCM), NIMH R01 MH100173 (JCM), NIMH R01 MH100173-02S1 (JCM), Patterson Trust 13-002909 (JCM), NIH DP50D012109-02 (AA), National Alliance for Research on Schizophrenia and Depression Young Investigator Award (AA), and the Yale Center for Clinical Investigation (AA). The authors would like to acknowledge discussions with both clinical and research colleagues, whose thoughts and ideas have been invaluable in developing and refining the conceptualization proposed in this paper.

Author Contributions

JHF and JW initially conceptualized this framework and all authors contributed to its refinement for this manuscript. JHF wrote this manuscript with substantial intellectual contributions and revisions from JM, AA, and JW. All authors have given approval of the final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer H. Foss-Feig or James C. McPartland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foss-Feig, J.H., McPartland, J.C., Anticevic, A. et al. Re-conceptualizing ASD Within a Dimensional Framework: Positive, Negative, and Cognitive Feature Clusters. J Autism Dev Disord 46, 342–351 (2016). https://doi.org/10.1007/s10803-015-2539-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-015-2539-x

Keywords

Navigation