Skip to main content
Log in

Brief Report: Biochemical Correlates of Clinical Impairment in High Functioning Autism and Asperger’s Disorder

  • Brief Report
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Amygdala dysfunction has been proposed as a critical contributor to social impairment in autism spectrum disorders (ASD). The current study investigated biochemical abnormalities in the amygdala in 20 high functioning adults with autistic disorder or Asperger’s disorder and 19 typically developing adults matched on age and IQ. Magnetic resonance spectroscopy was used to measure N-acetyl aspartate (NAA), creatine/phosphocreatine (Cre), choline/choline containing compounds (Cho), and Myoinositol (mI) in the right and left amygdala. There were no significant between-group differences in any of the metabolites. However, NAA and Cre levels were significantly correlated to clinical ratings on the Autism Diagnostic Interview-Revised. This suggests that altered metabolite levels in the amygdala may be associated with a more severe early developmental course in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239. doi:10.1016/S0959-4388(00)00202-6.

    Article  PubMed  Google Scholar 

  • Adolphs, R., Sears, L., & Piven, J. (2001). Abnormal processing of social information from faces in autism. Journal of Cognitive Neuroscience, 13(2), 232–240. doi:10.1162/089892901564289.

    Article  PubMed  Google Scholar 

  • Adolphs, R., Tranel, D., Hamann, S., Young, A. W., Calder, A. J., Phelps, E. A., et al. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 37(10), 1111–1117. doi:10.1016/S0028-3932(99)00039-1.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., Bauman, M. D., & Schumann, C. M. (2003). The amygdala and autism: Implications from non-human primate studies. Genes Brain & Behavior, 2(5), 295–302. doi:10.1034/j.1601-183X.2003.00043.x.

    Article  Google Scholar 

  • Amat, J. A., Bansal, R., Whiteman, R., Haggerty, R., Royal, J., & Peterson, B. S. (2008). Correlates of intellectual ability with morphology of the hippocampus and amygdala in healthy adults. Brain and Cognition, 66(2), 105–114. doi:10.1016/j.bandc.2007.05.009.

    Article  PubMed  Google Scholar 

  • Ashwin, C., Baron-Cohen, S., Wheelwright, S., O’Riordan, M., & Bullmore, E. T. (2006). Differential activation of the amygdala and the ‘social brain’ during fearful face-processing in Asperger Syndrome. Neuropsychologia, 1, 349–363.

    Google Scholar 

  • Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59(2), 175–183.

    PubMed  Google Scholar 

  • Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., et al. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53(9), 2145–2150.

    PubMed  Google Scholar 

  • Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience and Biobehavioral Reviews, 30(1), 97–117. doi:10.1016/j.neubiorev.2005.07.002.

    Article  PubMed  Google Scholar 

  • Barker, P. B., Soher, B. J., Blackband, S. J., Chatham, J. C., Mathews, V. P., & Bryan, R. N. (1993). Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR in Biomedicine, 6(1), 89–94. doi:10.1002/nbm.1940060114.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Reviews, 24(3), 355–364. doi:10.1016/S0149-7634(00)00011-7.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., et al. (1999). Social intelligence in the normal and autistic brain: An fMRI study. The European Journal of Neuroscience, 11(6), 1891–1898. doi:10.1046/j.1460-9568.1999.00621.x.

    Article  PubMed  Google Scholar 

  • Brooks, W. M., Friedman, S. D., & Stidley, C. A. (1999). Reproducibility of 1H-MRS in vivo. Magnetic Resonance in Medicine, 41(1), 193–197. doi:10.1002/(SICI)1522-2594(199901)41:1<193::AID-MRM27>3.0.CO;2-P.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–254.

    PubMed  Google Scholar 

  • Critchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Van Amelsvoort, T., Robertson, D. M., et al. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123(Pt 11), 2203–2212. doi:10.1093/brain/123.11.2203.

    Article  PubMed  Google Scholar 

  • Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519–526.

    PubMed  Google Scholar 

  • Endo, T., Shioiri, T., Kitamura, H., Kimura, T., Endo, S., Masuzawa, N., et al. (2007). Altered chemical metabolites in the amygdala-hippocampus region contribute to autistic symptoms of autism spectrum disorders. Biological Psychiatry, 62(9), 1030–1037. doi:10.1016/j.biopsych.2007.05.015.

    Article  PubMed  Google Scholar 

  • Friedman, S. D., Shaw, D. W., Artru, A. A., Richards, T. L., Gardner, J., Dawson, G., et al. (2003). Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 60(1), 100–107.

    PubMed  Google Scholar 

  • Gabis, L., Wei, H., Azizian, A., DeVincent, C., Tudorica, A., Kesner-Baruch, Y., et al. (2008). 1H-magnetic resonance spectroscopy markers of cognitive and language ability in clinical subtypes of autism spectrum disorders. Journal of Child Neurology, 23(7), 766–774. doi:10.1177/0883073808315423.

    Article  PubMed  Google Scholar 

  • Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L., Jr. (1999). Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc Biol Sci, 266(1426), 1375–1379. doi:10.1098/rspb.1999.0790.

    Article  PubMed  Google Scholar 

  • Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, W. L., Jr, & Brooks, W. M. (2000). Myths of neuropsychology: intelligence, neurometabolism, and cognitive ability. The Clinical Neuropsychologist, 14(4), 535–545. doi:10.1076/clin.14.4.535.7198.

    PubMed  Google Scholar 

  • Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., et al. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131(Pt 4), 1000–1012. doi:10.1093/brain/awm334.

    Article  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E., Leventhal, B., DiLavore, P., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi:10.1023/A:1005592401947.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. doi:10.1007/BF02172145.

    Article  PubMed  Google Scholar 

  • Munson, J., Dawson, G., Abbott, R., Faja, S., Webb, S. J., Friedman, S. D., et al. (2006). Amygdalar volume and behavioral development in autism. Archives of General Psychiatry, 63(6), 686–693. doi:10.1001/archpsyc.63.6.686.

    Article  PubMed  Google Scholar 

  • Murphy, D. G., Critchley, H. D., Schmitz, N., McAlonan, G., Van Amelsvoort, T., Robertson, D., et al. (2002). Asperger syndrome: A proton magnetic resonance spectroscopy study of brain. Archives of General Psychiatry, 59(10), 885–891. doi:10.1001/archpsyc.59.10.885.

    Article  PubMed  Google Scholar 

  • Nacewicz, B. M., Dalton, K. M., Johnstone, T., Long, M. T., McAuliff, E. M., Oakes, T. R., et al. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63(12), 1417–1428. doi:10.1001/archpsyc.63.12.1417.

    Article  PubMed  Google Scholar 

  • Otsuka, H., Harada, M., Mori, K., Hisaoka, S., & Nishitani, H. (1999). Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: An 1H-MR spectroscopy study. Neuroradiology, 41(7), 517–519. doi:10.1007/s002340050795.

    Article  PubMed  Google Scholar 

  • Page, L. A., Daly, E., Schmitz, N., Simmons, A., Toal, F., Deeley, Q., et al. (2006). In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. American Journal of Psychiatry, 163, 2189–2192.

    Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., Spielman, D., Sullivan, E. V., & Lim, K. O. (1999). In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: Effects of normal aging. Magnetic Resonance in Medicine, 41(2), 276–284. doi:10.1002/(SICI)1522-2594(199902)41:2<276::AID-MRM10>3.0.CO;2-8.

    Article  PubMed  Google Scholar 

  • Pierce, K., Muller, R. A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform ‘face area’ in autism: Evidence from functional MRI. Brain, 124(Pt 10), 2059–2073. doi:10.1093/brain/124.10.2059.

    Article  PubMed  Google Scholar 

  • Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672–679. doi:10.1002/mrm.1910300604.

    Article  PubMed  Google Scholar 

  • Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58(1), 1–9. doi:10.1016/j.biopsych.2005.03.026.

    Article  PubMed  Google Scholar 

  • Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. The Journal of Neuroscience, 26(29), 7674–7679. doi:10.1523/JNEUROSCI.1285-06.2006.

    Article  PubMed  Google Scholar 

  • Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; The hippocampus is enlarged at all ages. The Journal of Neuroscience, 24(28), 6392–6401. doi:10.1523/JNEUROSCI.1297-04.2004.

    Article  PubMed  Google Scholar 

  • Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192.

    PubMed  Google Scholar 

  • Wang, A. T., Dapretto, M., Hariri, A. R., Sigman, M., & Bookheimer, S. Y. (2004). Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 43(4), 481–490. doi:10.1097/00004583-200404000-00015.

    Article  PubMed  Google Scholar 

  • Watson, D., & Friend, R. (1969). Measurement of social-evaluative anxiety. Journal of Consulting and Clinical Psychology, 33(4), 448–457. doi:10.1037/h0027806.

    Article  PubMed  Google Scholar 

  • Williams, J. H., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44(4), 610–621. doi:10.1016/j.neuropsychologia.2005.06.010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Child Health and Human Development (U19 HD34565) and the National Institute of Mental Health (U54MH066399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia M. Kleinhans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinhans, N.M., Richards, T., Weaver, K.E. et al. Brief Report: Biochemical Correlates of Clinical Impairment in High Functioning Autism and Asperger’s Disorder. J Autism Dev Disord 39, 1079–1086 (2009). https://doi.org/10.1007/s10803-009-0707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-009-0707-6

Keywords

Navigation