Skip to main content

Advertisement

Log in

Comparison of Form and Motion Coherence Processing in Autistic Spectrum Disorders and Dyslexia

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

A large body of research has reported visual perception deficits in both people with dyslexia and autistic spectrum disorders. In this study, we compared form and motion coherence detection between a group of adults with high-functioning autism, a group with Asperger’s disorder, a group with dyslexia, and a matched control group. It was found that motion detection was intact in dyslexia and Asperger. Individuals with high-functioning autism showed a general impaired ability to detect coherent form and motion. Participants with Asperger’s syndrome showed lower form coherence thresholds than the dyslexic and normally developing adults. The results are discussed with respect to the involvement of the dorsal and ventral pathways in developmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adelson E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, [A], 2, 284–299.

    Google Scholar 

  • American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th edn.). Washington: Author.

    Google Scholar 

  • Atkinson, J. (2000). The developing visual brain. Oxford: Oxford University Press.

    Google Scholar 

  • Atkinson, J., Braddick, O., Anker, S., Curran, W., Andrew, R., & Braddick, F. (2003). Neurobiological models of visuo-spatial cognition in young Williams’s syndrome children: Measures of dorsal stream and frontal function. Developmental Neuropsychology, 23, 139–172.

    Article  PubMed  Google Scholar 

  • Bedell, H. E., & Johnson, C. A. (1995). The effect of flicker on foveal and peripheral thresholds for oscillatory motion. Vision Research, 35, 2179–2189.

    Article  PubMed  Google Scholar 

  • Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441.

    Article  PubMed  Google Scholar 

  • Biscaldi, M., Fischer, B., & Hartnegg, K. (2000). Voluntary saccadic control in dyslexia. Perception, 29, 509–521.

    Article  PubMed  Google Scholar 

  • Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and “dorsal stream vulnerability”. Neuropsychologia, 13, 1769–1784.

    Article  Google Scholar 

  • Braddick, O. J., O’Brien, J. M. D., Wattam-Bell, J., Atkinson, J., & Turner, R. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated networks in the human brain. Current Biology, 10, 731–734.

    Article  PubMed  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745–4765.

    PubMed  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1993). Responses of neurons in macaque MT to stochastic motion signals. Visual Neuroscience, 10, 1157–1169.

    PubMed  Google Scholar 

  • Chen, Y., McPeek, R. M., Intriligator, J., Holzman, P. S., & Nakayama, K. (1998). Smooth pursuit to a movement flow and associated perceptual judgments. In W. Becker et al. (Eds.), Current oculomotor research: Physiological and psychological aspects. New York: Plenum.

    Google Scholar 

  • Davis, R. A., Bockbrader, M. A., Murphy, R. R., Hetrick, W. P., & O’Donnell, B. F. (2006). Subjective perceptual distortions and visual dysfunction in children with autism. Journal of Autism and Developmental Disorders, 36, 199–210.

    Article  PubMed  Google Scholar 

  • Eden, G. F., Stein, J. F, Wood, H. M., & Wood, F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34, 1345–1358.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: Evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138, 46–53.

    Article  Google Scholar 

  • Giaschi, D., Regan, D., Kraft, S., & Hong, X. H. (1992). Defective processing of motion in the fellow eye of unilateral amblyopes. Investigative Ophthalmology and Visual Science, 33, 2483–2489.

    PubMed  Google Scholar 

  • Gillberg C., & Gillberg, C. (1989). Asperger syndrome: Some epidemiological considerations: A research note. Journal of Child Psychology and Psychiatry, 30, 631–638.

    Article  PubMed  Google Scholar 

  • Glass, L. (1969). Moire effect from random dots. Nature, 223, 578–580.

    Article  PubMed  Google Scholar 

  • Hansen, P. C., Stein, J. F., Orde, S. R., Winter, J. L., & Talcott, J. B. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? NeuroReport 12, 1527–1530.

    Article  PubMed  Google Scholar 

  • Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? Journal of Child Psychology and Psychiatry, 38, 527–534.

    Article  PubMed  Google Scholar 

  • Klin, A., Volkmar, F. R., Sparrow, S. S., Cicchetti, D. V., & Rourke, B. P. (1995). Validity and neuropsychological characterization of Asperger syndrome: Convergence with Nonverbal Learning Disabilities syndrome. Journal of Child Psychology and Psychiatry, 36, 1127–1140.

    Article  PubMed  Google Scholar 

  • Kogan, C. S., Bertone, A., Cornish, K., Boutet, I., Der Kaloustian, V. M., Andermann, E., Faubert, J., & Chaudhuri A. (2004). Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology, 63, 1634–1639.

    PubMed  Google Scholar 

  • Legge, G. E, & Campbell, F. W. (1981). Displacement detection in human vision. Vision Research, 21, 205–213.

    Article  PubMed  Google Scholar 

  • Livingstone, M. S., &. Hubel, D. H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Lotspeich, L. J., Kwon, H., Schumann, C. M., Fryer, S. L., Goodlin-Jones, B. L., Buonocore, M. H., Lammers, C. R., Amaral, D. G., & Reiss, A. L. (2004). Investigation of neuroanatomical differences between autism and Asperger syndrome. Archives of General Psychiatry, 61, 291–298.

    Article  PubMed  Google Scholar 

  • Macintosh, K. E., & Dissanayake, C. (2004). Annotation: The similarities and differences between autistic disorder and Asperger’s disorder: A review of the empirical evidence. Journal of Child Psychology and Psychiatry, 45, 421–434.

    Article  PubMed  Google Scholar 

  • Mann, T. A., & Walker, P. (2003). Autism and a deficit in broadening the spread of visual attention. Journal of Child Psychology and Psychiatry, 44, 274–284.

    Article  PubMed  Google Scholar 

  • Mazefsky, C. A., & Oswald, D. P. (2006). The discriminative ability and diagnostic utility of the ADOS-G, ADI-R, and GARS for children in a clinical setting. Autism, 11, 553–549.

    Google Scholar 

  • McKendrick, A. M., Badcock, D. R., & Gurgone, M. (2006). Vernier acuity is normal in migraine, whereas global form and global motion perception are not. Investigative Ophthalmology and Visual Science, 47, 3213–3219.

    Article  PubMed  Google Scholar 

  • Merigan, W. H. (1989). Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience, 9, 776–783.

    PubMed  Google Scholar 

  • Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? In W. M. Cowan, E. M. Shooter, C. F. Stevens, & R. F. Thompson (Eds.), Ann. Rev. Neuroscience. Annual Reviews, Palo Alto, CA, pp. 369–402.

  • Milne, E., Swettenham, J., Hansen, P. C., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43, 255–263.

    Article  PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford Psychology Series.

  • Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research, 21, 427–433.

    Article  PubMed  Google Scholar 

  • Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 2201–2211.

    PubMed  Google Scholar 

  • Newsome, W. T., Wurtz, R. H., & Komatsu, H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology, 60, 604–620.

    PubMed  Google Scholar 

  • O’Donell, B. F., Swearer, J. M., Smith, L. T., Nestor, P. G., Shenton, M. E., & McCarley, R. W. (1996). Selective deficits in visual perception and recognition in schizophrenia. American Journal of Psychiatry, 153, 687–692.

    Google Scholar 

  • Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience, 21, 227–277.

    Article  PubMed  Google Scholar 

  • Pavlidis, G. T. (1981). Do eye movements hold the key to dyslexia? Neuropsychologia, 19, 57–64.

    Article  PubMed  Google Scholar 

  • Plaisted, K. C., Swettenham, J., & Rees, L. (1999). Children with autism show local precedence in a divided attention task and global precedence in a selective attention task. Journal of Child Psychology and Psychiatry, 40, 733–742.

    Article  PubMed  Google Scholar 

  • Ramus, F. (2003) Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212–218.

    Article  PubMed  Google Scholar 

  • Rees, G., Friston, K., & Koch, C. (2000). A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience, 3, 716–723.

    Article  PubMed  Google Scholar 

  • Regan, D., & Maxner, C. (1986). Orientation-dependent loss of contrast sensitivity for pattern and flicker sensitivity in multiple sclerosis. Clinical Vision Sciences, 1, 1–23.

    Google Scholar 

  • Rinehart, N., Bradshaw, J., Moss, S., Brereton, A., & Tonge, B. (2000). Atypical interference of local detail on global processing in high functioning autism and Asperger’s disorder. Journal of Child Psychology and Psychiatry, 41, 769–778.

    Article  PubMed  Google Scholar 

  • Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2001). Movement preparation in high-functioning autism and Asperger’s disorder: A serial choice-reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31, 79–88.

    Article  PubMed  Google Scholar 

  • Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2002). A clinical and neurobehavioural comparison of high-functioning autism and Asperger’s disorder. Australian and New Zealand Journal of Psychiatry, 36, 762–770.

    Article  PubMed  Google Scholar 

  • Rizzo, M., & Nawrot, M. (1998). Perception of movement and shape in Alzheimer’s disease. Brain, 121, 2259–2270.

    Article  PubMed  Google Scholar 

  • Rosenhall, U., Johansson, E., & Gillberg, C. (1988). Oculomotor findings in autistic children. Journal of Laryngology and Otology, 102, 435–439.

    PubMed  Google Scholar 

  • Rumsey, J. M., & Hamburger, D. (1990). Neuropsychological divergence of high-level autism and severe dyslexia. Journal of Autism and Developmental Disorders, 20, 155–168.

    Article  PubMed  Google Scholar 

  • Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346, 174–177.

    Article  PubMed  Google Scholar 

  • Scharre, J. E., & Creedon, M. P. (1992). Assessment of visual function in autistic children. Optometry and Vision Science, 69, 433–439.

    Article  PubMed  Google Scholar 

  • Shea, V., & Mesibov, G. B. (1985). Brief report: The relationship of learning disabilities and higher-level autism. Journal of Autism and Developmental Disorders, 15, 425–435.

    Article  PubMed  Google Scholar 

  • Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision research, 40, 111–127.

    Article  PubMed  Google Scholar 

  • Slaghuis, W. L., & Ryan, J. F. (1999). Spatio-temporal contrast sensitivity, coherent motion, and visible persistence in developmental dyslexia. Vision Research, 39, 651–668.

    Article  PubMed  Google Scholar 

  • Spencer, J., & O’Brien, J. M. D. (2006). Visual form processing deficits in autism. Perception, 35, 1047–1055.

    Article  PubMed  Google Scholar 

  • Spencer, J., O’Brien, J. M. D., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Form and motion Coherence in autism: Is there a specific dorsal stream deficit in people with autism? NeuroReport, 11, 2765–2767.

    Article  PubMed  Google Scholar 

  • Sperling, A. J., Zhong-Lin, L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8, 862–863.

    PubMed  Google Scholar 

  • Stuart, G. W., McAnally, K. I., McKay, A., Johnston, M., & Castles, A. (2006). A test of the magnocellular deficit theory of dyslexia in an adult sample. Cognitive Neuropsychology, 23, 1215–1229.

    Article  Google Scholar 

  • Szatmari, P., Archer, L., Fisman, S. M., Streiner, D. L., & Wilson, F. (1995). Asperger’s Syndrome and autism: Differences in behavior, cognition, and adaptive functioning. Journal of the American Academy of Child and Adolescent Psychiatry, 34, 1662–1671.

    Article  PubMed  Google Scholar 

  • Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004). Pursuit eye movement deficits in autism. Brain, 127, 2584–2594.

    Article  PubMed  Google Scholar 

  • Talcott, J. B., Hansen, P. C., Assoku, E., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia, 38, 935–943.

    Article  PubMed  Google Scholar 

  • Talcott, J. B., Hansen, P. C., Willis-Owen, C., McKinnell, I. W., Richardson, A. J., & Stein, J. F. (1998). Visual magnocellular impairment in adult developmental dyslexics. Neuroophthalmology, 20, 187–201.

    Article  Google Scholar 

  • Tootell, R. G. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T.,Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–3230.

    PubMed  Google Scholar 

  • Ungeleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour. Cambridge: MIT Press.

    Google Scholar 

  • van der Geest, J. N., Kemner, C., Camfferman, G., Verbaten, M. N., & van Engeland, H. (2001). Eye movements, visual attention, and autism: A saccadic reaction time study using the gap and overlap paradigm. Biological Psychiatry, 50, 614–619.

    Article  PubMed  Google Scholar 

  • Vidyasagar, T. R. (2004). Neural underpinnings of dyslexia as a disorder of visuo-spatial attention. Clinical and Experimental Optometry, 87, 4–10.

    Article  PubMed  Google Scholar 

  • Von Karolyi, C., Winner, E., Gray, W., & Sherman, G. F. (2003). Dyslexia linked to talent: Global visual-spatial ability. Brain and Language, 85, 427–431.

    Article  Google Scholar 

  • Wechsler, D. (1999). WASI: Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wertheim, A. H., van Gelder, P., Lautin, A., Peselow, E., & Cohen, N. (1985). High thresholds for movement perception in schizophrenia may indicate abnormal extraneous noise levels of central vestibular activity. Biological Psychiatry, 20, 1197–1210.

    Article  PubMed  Google Scholar 

  • White, S., Frith, U., Milne, E., Stuart, R., Swettenham, J., & Ramus, F. (2006). A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children. Cognitive Neuropsychology, 23, 748–761.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are very thankful to the individuals and colleges who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Tsermentseli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsermentseli, S., O’Brien, J.M. & Spencer, J.V. Comparison of Form and Motion Coherence Processing in Autistic Spectrum Disorders and Dyslexia. J Autism Dev Disord 38, 1201–1210 (2008). https://doi.org/10.1007/s10803-007-0500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-007-0500-3

Keywords

Navigation