Skip to main content
Log in

Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

The partition algebra \(\mathsf {P}_k(n)\) and the symmetric group \(\mathsf {S}_n\) are in Schur–Weyl duality on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\), so there is a surjection \(\mathsf {P}_k(n) \rightarrow \mathsf {Z}_k(n) := \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is an isomorphism when \(n \ge 2k\). We prove a dimension formula for the irreducible modules of the centralizer algebra \(\mathsf {Z}_k(n)\) in terms of Stirling numbers of the second kind. Via Schur–Weyl duality, these dimensions equal the multiplicities of the irreducible \(\mathsf {S}_n\)-modules in \(\mathsf {M}_n^{\otimes k}\). Our dimension expressions hold for any \(n \ge 1\) and \(k\ge 0\). Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on \(\mathsf {M}_n^{\otimes k}\) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of \(\mathsf {S}_n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adin, R., Postnikov, A., Roichman, Y.: Combinatorial Gelfand models. J. Algebra 320(3), 1311–1325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adin, R., Postnikov, A., Roichman, Y.: A Gelfand model for wreath products. Israel J. Math. 179, 381–402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benkart, G., Halverson, T.: Exceptional McKay centralizer algebras, in preparation

  4. Benkart, G., Halverson, T.: Partition algebras \({\sf P}_k(n)\) with \(2k > n\), in preparation

  5. Benkart, G., Halverson, T.: Tensor power multiplicities for symmetric and alternating groups and dimensions of irreducible modules for partition algebras, arXiv:1605.06543v1

  6. Benkart, G.: Connecting the McKay correspondence and Schur–Weyl duality. In: Proceedings of International Congress of Mathematicians Seoul, vol. 1, pp. 633–656 (2014)

  7. Bernhart, F.R.: Catalan, Motzkin, and Riordan numbers. Discrete Math. 204, 73–112 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloss, M.M.: Partition Algebras and Permutation Representations of Wreath Products, Ph.D. Thesis, University of Wisconsin-Madison (2002)

  9. Bloss, M.: The partition algebra as a centralizer algebra of the alternating group. Commun. Algebra 33(7), 2219–2229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Deng, E., Du, R., Stanley, R., Yan, C.: Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc. 359, 1555–1575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daugherty, Z., Orellana, R.: The quasi-partition algebra. J. Algebra 404, 124–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, S.: Tensor powers of the defining representation of \({\sf S}_n\), arXiv:1508.05433

  13. Goupil, A., Chauve, C.: Combinatorial operators for Kronecker powers of representations of \(S_n\). Sém. Lothar. Combin. 54 (2005/07), Art. B54j, 13 pp. (electronic)

  14. Halverson, T., Ram, A.: Partition algebras. Eur. J. Combin. 26(6), 869–921 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halverson, T., Reeks, M.: Gelfand models for diagram algebras. J. Algebr. Combin. 41(2), 229–255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Inglis, N.F.J., Richardson, R.W., Saxl, J.: An explicit model for the complex representations of \({\sf S}_n\). Archiv der Math. 54, 258–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. James, G., Kerber, A.: The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading (1981)

  18. Jones, V.F.R.: The Potts model and the symmetric group. In: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), World Scientific Publishing, River Edge, pp. 259–267 (1994)

  19. Klyachko, A.A.: Models for complex representations of the groups \({{\sf GL}}(n, q)\) and Weyl groups (Russian). Dokl. Akad. Nauk SSSR 261, 275–278 (1981)

    MathSciNet  Google Scholar 

  20. Knuth, D.E.: Two notes on notation. Am. Math. Mon. 99(5), 403–422 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin, P.: Representations of graph Temperley–Lieb algebras. Publ. Res. Inst. Math. Sci. 26(3), 485–503 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, P.: Temperley–Lieb algebras for non-planar statistical mechanics-the partition algebra construction. J. Knot Theory Ramif. 3, 51–82 (1994)

    Article  MATH  Google Scholar 

  23. Martin, P.: The structure of the partition algebra. J. Algebra 183, 319–358 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, P., Rollet, G.: The Potts model representation and a Robinson–Schensted correspondence for the partition algebra. Compos. Math. 112, 237–254 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, P.P., Saleur, H.: Algebras in higher-dimensional statistical mechanics—the exceptional partition (mean field) algebras. Lett. Math. Phys. 30, 179–185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mbirika, A.: Towards a Schur–Weyl duality for the alternating group, preprint 2009, available at http://people.uwec.edu/mbirika/

  27. Orellana, R., Zabrocki, M.: Symmetric group characters as symmetric functions, arXiv:1605.06672

  28. Prasad, A.: Representation Theory, A Combinatorial Viewpoint, Cambridge Studies in Advanced Mathematics 147. Cambridge University Press, Delhi (2015)

  29. Ruff, O.: Weight theory for alternating groups. Algebra Colloq. 15, 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (OEIS) (2010), http://oeis.org

  31. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge, England (1997)

    Book  MATH  Google Scholar 

  32. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge, England (1999)

    Book  MATH  Google Scholar 

  33. Sun, Y., Wu, X.: The largest singletons of set partitions. Eur. J. Combin. 32(6), 369–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Halverson.

Additional information

Tom Halverson gratefully acknowledges partial support from Simons Foundation Grant 283311. Nate Harman was partially supported by National Science Foundation Graduate Research Fellowship Grant 1122374.

Appendices: Bratteli Diagrams

Appendices: Bratteli Diagrams

1.1 Appendix 1: Levels \(\ell = 0,\frac{1}{2},1,\ldots ,\frac{7}{2},4\)   of the Bratteli diagram \(\mathcal {B}(\mathsf {S}_6,\mathsf {S}_5)\)

Level \(\ell = \frac{7}{2}\) is the first time the centralizer algebra loses a dimension from the generic dimension, which is the 7th Bell number \(\mathsf {B}(7) = 877\).

figure e

1.2 Appendix 2: Levels \(\ell = 0,\frac{1}{2},1,\ldots ,\frac{7}{2},4\) of the quasi-Bratteli diagram \( \mathcal {QB}(\mathsf {S}_6,\mathsf {S}_5)\)

To calculate the subscripts on the half-integer rows, use Pascal addition of the subscripts from the row above. To calculate the subscripts on integer level rows, first use Pascal addition from the row above, and then subtract the subscript on the same partition from two rows above.

figure f

1.3 Appendix 3: Levels \(\ell = 0,\frac{1}{2},1,\ldots ,\frac{7}{2},4\) of the Bratteli diagram \(\mathcal {B}(\mathsf {A}_6, \mathsf {A}_5)\)

figure g

1.4 Appendix 4: Levels \(\ell = 0,\frac{1}{2},1,\ldots ,\frac{7}{2},4\) of the quasi-Bratteli diagram \(\mathcal {QB}(\mathsf {A}_6,\mathsf {A}_5)\)

To calculate the subscripts on the half-integer rows, use Pascal addition of the subscripts from the row above. To calculate the subscripts on integer level rows, first use Pascal addition from the row above, and then subtract the subscript on the same partition from two rows above.

figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkart, G., Halverson, T. & Harman, N. Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups. J Algebr Comb 46, 77–108 (2017). https://doi.org/10.1007/s10801-017-0748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0748-4

Keywords

Mathematics Subject Classification

Navigation