Skip to main content
Log in

Solution-processed spin coated multilayer structured nickel oxide thin films for anodic electrochromism

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Solution-processed, NiO thin films have been synthesized via spin coating technique. Nickel nitrate hexahydrate and 2-Aminoethanol have been used as nickel precursor and oxidizing agent, respectively for depositing layers of NiO solution on the FTO substrate. Investigating the effect of NiO layers on morphological, structural, electrochromic properties has been observed. An X-Ray diffraction study has confirmed the deposition of cubic phase nanostructured NiO with an observed average crystallite size varying from 15 to 25 nm. FESEM images of NiO thin films show the formation of nanorods and nano pebbles structures. Synthesized NiO thin films exhibit anodic electrochromism in 1 M KOH electrolyte solution, i.e., transition from bleached to coloration state due to intercalation of OH ions and electrons with a switching time of around 1.2 s. Transportation of OH ions and electrons at the interface of NiO thin film has been well explained using cyclic voltammetry, electrochemical impedance spectroscopy in potential window of −1.0 V to + 1.0 V. 20 layers of NiO thin film shows better electrochromic reversibility and stability. Also, it gives a Power conversion efficiency of 0.41% when used as hole transporting layer (HTL) in Dye sensitized solar cell (DSSC) application with maximum value of Jsc as 5.81 mA/cm2. Thus, synthesized NiO thin film has been a potential candidate for DSSC and electrochromic based applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Haque MA, Sheikh AD, Guan X, Wu T (2017) Metal oxides as efficient charge transporters in perovskite solar cells. Adv Energy Mater 7:1–23. https://doi.org/10.1002/aenm.201602803

    Article  CAS  Google Scholar 

  2. Sk M, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140. https://doi.org/10.1016/j.jpowsour.2016.01.056

    Article  CAS  Google Scholar 

  3. Leilei T, Quanchao Z, Jia LI, Yueli SHI, Jianpeng C, Feng LU, Shigang SUN (2011) Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chin Sci Bull 56:3204–3212. https://doi.org/10.1007/s11434-011-4609-6

    Article  CAS  Google Scholar 

  4. Qi W, Gao Z (2015) Metal oxide nanoparticles in electroanalysis. Electroanalysis 27(9):2074–2090. https://doi.org/10.1002/elan.201500024

    Article  CAS  Google Scholar 

  5. Liu N, Li J, Ma W, Liu W, Shi Y, Tao J, Zhang X, Su J, Li L, Gao Y (2014) Ultrathin and lightweight 3D free-standing Ni@Nio nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. ACS Appl Mater Interfaces 6:13627–13634. https://doi.org/10.1021/am503108x

    Article  CAS  PubMed  Google Scholar 

  6. Patil PS, Patil PR, Kamble SS, Pawar SH (2000) Thickness-dependent electrochromic properties of solution thermolyzed tungsten oxide thin. Sol Energy Mater Sol Cells 60(2):143–153. https://doi.org/10.1016/S0927-0248(99)00079-3

    Article  CAS  Google Scholar 

  7. Kumar KN, Shaik H, Pawar A, Chandrashekar LN, Abdul S, Nithya G, Jafri RI, Madhavi V, Gupta J, Reddy GVA (2022) Effect of annealing and oxygen partial pressure on the RF sputtered WO3 thin films for electrochromic applications. Mater Today Proc 59:339–344. https://doi.org/10.1016/j.matpr.2021.11.185

    Article  CAS  Google Scholar 

  8. Kumar KN, Shaik H, Chandrashekar LN, Aishwarya P, Abdul S, Nithya G, Madhavi V, Jafri RI, Gupta J, Reddy GVA (2022) On ion transport during the electrochemical reaction on plane and GLAD deposited WO3 thin films. Mater Today Proc 59:275–282. https://doi.org/10.1016/j.matpr.2021.11.113

    Article  CAS  Google Scholar 

  9. Kumar KN, Nithya G, Shaik H, Hemanth B, Chethana M, Kishore K, Madhavi V, Jafri RI, Abdul S, Gupta J, Reddy GVA (2022) Simulation and fabrication of tungsten oxide thin films for electrochromic applications. Phys B Phys Condens Matter 640:413932. https://doi.org/10.1016/j.physb.2022.413932

    Article  CAS  Google Scholar 

  10. Kumar KN, Shaik H, Gupta J, Abdul S, Jafri I, Pawar A, Madhavi V, Reddy AGV, Nithya G (2022) Sputter deposited tungsten oxide thin films and nanopillars: electrochromic perspective. Mater Chem Phys 278:125706. https://doi.org/10.1016/j.matchemphys.2022.125706

    Article  CAS  Google Scholar 

  11. Mujawar SH, Inamdar AI, Patil SB, Patil PS (2006) Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 177:3333–3338. https://doi.org/10.1016/j.ssi.2006.08.032

    Article  CAS  Google Scholar 

  12. Paulose R, Mohan R, Parihar V (2017) Nanostructured nickel oxide and its electrochemical behaviour—a brief review. Nano-Struct Nano-Objects 11:102–111. https://doi.org/10.1016/j.nanoso.2017.07.003

    Article  CAS  Google Scholar 

  13. Sun DL, Zhao BW, Liu JB, Wang H, Yan H (2017) Application of nickel oxide nanoparticles in electrochromic materials. Ionics (Kiel) 23:1509–1515. https://doi.org/10.1007/s11581-017-1974-4

    Article  CAS  Google Scholar 

  14. Zhang W, Li H, Hopmann E, Elezzabi AY (2020) Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 10(2):825–850. https://doi.org/10.1515/nanoph-2020-0474

    Article  CAS  Google Scholar 

  15. Nail BA, Fields JM, Zhao J, Wang J, Greaney MJ, Brutchey RL, Osterloh FE (2015) Nickel oxide particles catalyze photochemical hydrogen evolution from water-nanoscaling promotes p—type character and minority carrier extraction. ACS Nano 9(5):5135–5142. https://doi.org/10.1021/acsnano.5b00435

    Article  CAS  PubMed  Google Scholar 

  16. Khalil A, Lalia BS, Hashaikeh R (2016) Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J Mater Sci 51:6624–6638. https://doi.org/10.1007/s10853-016-9946-z

    Article  CAS  Google Scholar 

  17. Wang B, Chen JS, Wang Z, Madhavi S, Wen X, Lou D (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2(10):1188–1192. https://doi.org/10.1002/aenm.201200008

    Article  CAS  Google Scholar 

  18. Luyo C, Ionescu R, Reyes LF, Topalian Z, Estrada W, Llobet E, Granqvist CG, Heszler P (2009) Chemical gas sensing response of NiO nanoparticle films made by reactive gas deposition. Sens Actuat B 138:14–20. https://doi.org/10.1016/j.snb.2008.11.057

    Article  CAS  Google Scholar 

  19. Wen R, Granqvist CG, Niklasson GA (2015) Anodic electrochromism for energy-efficient windows: cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv Func Mater 25(22):3359–3370. https://doi.org/10.1002/adfm.201500676

    Article  CAS  Google Scholar 

  20. Wang L, Hao Y, Zhao Y, Lai Q, Xu X (2010) Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks. J Solid State Chem 183:2576–2581. https://doi.org/10.1016/j.jssc.2010.09.006

    Article  CAS  Google Scholar 

  21. Nanoscale C, Meher SK, Justin P, Rao GR (2011) Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3:683–692. https://doi.org/10.1039/c0nr00555j

    Article  CAS  Google Scholar 

  22. Kim S, Lee J, Ahn H, Song H, Jang J (2013) Facile route to an efficient NiO supercapacitor with a three- dimensional nanonetwork morphology. ACS Appl Mater Inter 5:1595–1603. https://doi.org/10.1021/am3021894

    Article  CAS  Google Scholar 

  23. Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J Solid State Chem 184:578–583. https://doi.org/10.1016/j.jssc.2011.01.019

    Article  CAS  Google Scholar 

  24. Zhong J, Wang XL, Xia XH, Gu CD, Xiang JY, Zhang J, Tu JP (2011) Self-assembled sandwich-like NiO film and its application for Li-ion batteries. J Alloys Compd 509:3889–3893. https://doi.org/10.1016/j.jallcom.2010.12.151

    Article  CAS  Google Scholar 

  25. Khairy M, El-safty SA (2014) Chemical Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sens Actuat B Chem 193:644–652. https://doi.org/10.1016/j.snb.2013.11.113

    Article  CAS  Google Scholar 

  26. Kalam A, Al-Shihri AS, Al-Sehemi AG, Awwad NS, Du G, Ahmad T (2013) Effect of pH on solvothermal synthesis of β-Ni(OH)2 and NiO nano-architectures: surface area studies, optical properties and adsorption studies. Superlattices Microstruct 55:83–97. https://doi.org/10.1016/j.spmi.2012.11.024

    Article  CAS  Google Scholar 

  27. Kumar KN, Shaik H, Madhavi V et al (2022) Glancing angle sputter deposited tungsten trioxide (WO3) thin films for electrochromic applications. Appl Phys A 128:985. https://doi.org/10.1007/s00339-022-06124-5

    Article  CAS  Google Scholar 

  28. Purushothaman KK, Muralidharan G (2009) The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Sol Energy Mater Sol Cells 93:1195–1201. https://doi.org/10.1016/j.solmat.2008.12.029

    Article  CAS  Google Scholar 

  29. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nano flakes synthesized through a microwave route. ACS Appl Mater Interface 5(6):2188–2196. https://doi.org/10.1021/am400012h

    Article  CAS  Google Scholar 

  30. Vidales-Hurtado MA, Mendoza-Galván A (2008) Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition. Mater Chem Phys 107(1):33–38. https://doi.org/10.1016/j.matchemphys.2007.06.036

    Article  CAS  Google Scholar 

  31. Sahu DR, Wu TJ, Wang SC, Huang JL (2017) Electrochromic behavior of NiO film prepared by e-beam evaporation. J Sci Adv Mater Devices 2:225–232. https://doi.org/10.1016/j.jsamd.2017.05.001

    Article  Google Scholar 

  32. Uplane MM, Mujawar SH, Inamdar AI, Shinde PS, Sonavane AC, Patil PS (2007) Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Appl Surf Sci 253(24):9365–9371. https://doi.org/10.1016/j.apsusc.2007.05.069

    Article  CAS  Google Scholar 

  33. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochim Acta 53:5721–5724. https://doi.org/10.1016/j.electacta.2008.03.047

    Article  CAS  Google Scholar 

  34. Kamil AF, Abdullah HI, Rheima AM, Mohammed SH (2021) Photochemical synthesized NiO nanoparticles based dye-sensitized solar cells: a comparative study on the counter electrodes and dye-sensitized concentrations. J Ovonic Res 17(3):299–305

    Article  CAS  Google Scholar 

  35. Dalavi DS, Suryavanshi MJ, Patil DS, Mali SS, Moholkar AV, Kalagi SS, Vanalkar SA, Kang SR, Kim JH, Patil PS (2011) Nanoporous nickel oxide thin films and its improved electrochromic performance: effect of thickness. Appl Surf Sci 257(7):2647–2656. https://doi.org/10.1016/j.apsusc.2010.10.037

    Article  CAS  Google Scholar 

  36. Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) Efficient electrochromic nickel oxide thin films by electrodeposition. J Alloys Compd 489:667–673. https://doi.org/10.1016/j.jallcom.2009.09.146

    Article  CAS  Google Scholar 

  37. Sialvi MZ, Mortimer RJ, Wilcox GD, Teridi AM, Varley TS, Wijayantha KGU, Kirk CA (2013) Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition. ACS Appl Mater Interfaces 5:5675–5682. https://doi.org/10.1021/am401025v

    Article  CAS  PubMed  Google Scholar 

  38. Hammad AH, Abdel-wahab MS, Vattamkandathil S (2019) Growth and correlation of the physical and structural properties of hexagonal nanocrystalline nickel oxide thin films with film thickness. Coatings 9(10):615. https://doi.org/10.3390/coatings9100615

    Article  CAS  Google Scholar 

  39. Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M (2016) Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram Int 42(7):8385–8394. https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  CAS  Google Scholar 

  40. Hassan AJ (2014) Study of optical and electrical properties of nickel oxide (NiO) thin films deposited by using a spray pyrolysis technique. J Modern Phys 05(18):2184–2191. https://doi.org/10.4236/jmp.2014.518212

    Article  Google Scholar 

  41. Granqvist CG, Niklasson GA (2009) Electrochromism in nickel oxide and tungsten oxide thin films: ion intercalation from different electrolytes. Sol Energy Mater Sol Cells 93:2050–2055. https://doi.org/10.1016/j.solmat.2009.05.009

    Article  CAS  Google Scholar 

  42. Usha KS, Sivakumar R, Sanjeeviraja C, Sathe V, Ganesan V, Wang TY (2016) Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed. RSC Adv 6:79668–79680. https://doi.org/10.1039/c5ra27099e

    Article  CAS  Google Scholar 

  43. Granqvist CG (2002) Handbook of inorganic electrochromic materials. Elsevier Department of Technology School of Engineering University of Uppsala, Sweden

    Google Scholar 

  44. Korošec RC, Felicijan M, Žener B, Pompe M, Dražić G, Gomilšek JP, Pihlar B, Bukovec P (2017) The role of thermal analysis in optimization of electrochromic effect of nickel oxide thin films, prepared by the sol-gel method: part III. Thermochim Acta 655:344–350. https://doi.org/10.1016/j.tca.2017.07.010

    Article  CAS  Google Scholar 

  45. Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of Nanostructured NiO. J Phys Chem B 105:3039–3044. https://doi.org/10.1021/jp003499s

    Article  CAS  Google Scholar 

  46. Kondalkar VV, Patil PB, Mane RM, Patil PS, Choudhury S, Bhosal PN (2016) Electrochromic performance of nickel oxide thin film: synthesis via electrodeposition technique. Macromol Symp 361:47–50. https://doi.org/10.1002/masy.201400253

    Article  CAS  Google Scholar 

  47. Browne MP, Nolan H, Berner NC, Duesberg G, Colavita P, Lyons M (2016) Electrochromic nickel oxide films for smart window applications. Int J Electrochem Sci 11:6636–6647. https://doi.org/10.20964/2016.08.38

    Article  CAS  Google Scholar 

  48. Kamal H, Elmaghraby EK, Ali SA, Abdel-hady K (2005) The electrochromic behavior of nickel oxide films sprayed at different preparative conditions. Thin Solid Films 483:330–339. https://doi.org/10.1016/j.tsf.2004.12.022

    Article  CAS  Google Scholar 

  49. Cesiulis H, Tsyntsaru N, Ramanavicius A, Ragoisha G (2016) The study of thin films by electrochemical impedance spectroscopy. Nanotechnol Nanosci. https://doi.org/10.1007/978-3-319-30198-3

    Article  Google Scholar 

  50. Gibson EA, Awais M, Dini D, Dowling DP, Pryce MT, Vos JG, Hagfeldt A (2013) Dye sensitized solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. Phys Chem Chem Phys 15:2411–2420. https://doi.org/10.1039/c2cp43592f

    Article  CAS  PubMed  Google Scholar 

  51. Chou CS, Hsiung CM, Wang CP, Yang RY, Guo MG (2010) Preparation of a counter electrode with p -type nio and its applications in dye-sensitized solar cell. Int J Photoenergy. https://doi.org/10.1155/2010/902385

    Article  Google Scholar 

  52. Gibson EA, Smeigh AL, Pleux LL, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström L (2009) A p-type NiO-based dye-sensitized solar cell with an open-circuit. Angew Chem Int Ed Engl 48(24):4402–4405. https://doi.org/10.1002/anie.200900423

    Article  CAS  PubMed  Google Scholar 

  53. He J, Lindström H, Hagfeldt A, Lindquist SE (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943. https://doi.org/10.1021/jp991681r

    Article  CAS  Google Scholar 

  54. Bandara J, Pradeep UW, Bandara RGSJ (2004) The role of n–p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells. J Photochem Photobiol 170(3):273–278. https://doi.org/10.1016/j.jphotochem.2004.08.023

    Article  CAS  Google Scholar 

  55. D’Amario L, Boschloo G, Hagfeldt A, Hammarström L (2014) Tuning of conductivity and density of states of NiO mesoporous films used in p-type DSSCs. J Phys Chem C 118(34):19556–19564. https://doi.org/10.1021/jp504551v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Indira Gandhi Delhi Technical University for Women (IGDTUW), New Delhi, India, and Netaji Subhas University of Technology (NSUT), New Delhi, India for their immense support and infrastructure facilities in research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by RG,  RJ, CR. The first draft of the manuscript was written by RG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chhaya Ravikant.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, R., Jha, R. & Ravikant, C. Solution-processed spin coated multilayer structured nickel oxide thin films for anodic electrochromism. J Appl Electrochem 53, 713–735 (2023). https://doi.org/10.1007/s10800-022-01807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01807-6

Keywords

Navigation