Skip to main content
Log in

Graphene modified Li1.2Ni0.133Co0.133Mn0.534O2 cathode material for high capacity lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Li1.2Ni0.133Co0.133Mn0.534O2/graphene composites are prepared with Li1.2Ni0.133Co0.133Mn0.534O2 particles and graphene oxide sol by a novel ethanol solution reduction method and an ethanol solvothermal method. The structure and morphology are characterized by X-ray diffraction, Raman spectra, scanning electron microscope, and transmission electron microscopy methods. It is found that the Li1.2Ni0.133Co0.133Mn0.534O2 spherical secondary particles are wrapped with a graphene network. A four-probe powder conductivity measure test shows that the electrical conductivity of the materials with graphene-wrapped is significantly improved, which is further proved by the electrochemical impedance spectroscopy and ohmic polarization. In addition, the graphene network coating structure can reduce the direct contact between electrolyte and electrode active material as a physical protection. Therefore, the electrochemical properties of the two composites obtained by the two methods are all improved. By comparison, the coating effect with ethanol solution reduction method is much better than that of with ethanol solvothermal method. The composite prepared by ethanol solution reduction method can deliver an average discharge capacity of 315.1 mAh g−1 at 0.05C and 281.4 mAh g−1 at 0.1C, which is about 40 mAh g−1 higher than that of the original material. It can deliver a capacity retention of 83.9% after 200 cycles, which is increased ~ 17% compared with that of the original material. Moreover, its discharge voltage platform and rate capability are greatly increased.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  2. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324

    Article  CAS  Google Scholar 

  3. Batteries -S (2016) Composite nanofibers as advanced materials for Li-ion, Li-O2, and Li. Electrochim Acta 192:529–550

    Article  Google Scholar 

  4. Ellis BL, Town K, Nazar LF (2012) New composite materials for lithium-ion batteries. Electrochim Acta 84:145–154

    Article  CAS  Google Scholar 

  5. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  6. Zhu CJ, Chen J, Liu SS et al (2018) Improved electrochemical performance of bagasse and starch-modified LiNi0.5Mn0.3Co0.2O2 materials for lithium-ion batteries. J Mater Sci 53:5242–5254

    Article  CAS  Google Scholar 

  7. Feng TT, Jiang WW, Zong ZQ, Wu MQ (2018) Investigation of the electrochemical performance of polyvinylidene fluoride-derived LiFePO4/C composite nanospheres. J Mater Sci 53:1279–1285

    Article  CAS  Google Scholar 

  8. Liu Y, Li X, Guo H, Wang Z, Hu Q, Peng W, Yang Y (2009) Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J Power Sources 189:721–725

    Article  CAS  Google Scholar 

  9. Dang J, Xiang F, Gu N, Zhang R, Mukherjee R, Oh I, Koratkar N, Yang Z (2013) Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries. J Power Sources 243:33–39

    Article  CAS  Google Scholar 

  10. Agostinia M, Matica A, Panerob S, Crocec F, Gunnellad R, Realee P, Brutti S (2017) A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels. Electrochim Acta 235:262–269

    Article  Google Scholar 

  11. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  12. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  13. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  14. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621

    Article  CAS  Google Scholar 

  15. Idemoto Y, Sekine T, Ishida N, Kitamura N (2017) Change of local structures for 0.5Li(Li1/3Mn2/3)O2-0.5Li(Mn1/3Ni1/3Co1/3)O2 in first charge process of different rates. J Mater Sci 52:8630–8649

    Article  CAS  Google Scholar 

  16. Yan W, Jiang J, Liu W, Sun D, Zhao E, Jin Y, Kanamura K (2017) Effect of precipitators on the morphologies and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 via rapid nucleation and post-solvothermal method. Electrochim Acta 224:161–170

    Article  CAS  Google Scholar 

  17. Idemoto Y, Inoue M, Kitamura N (2014) Composition dependence of average and local structure of xLi(Li1/3Mn2/3)O2(1−x)Li(Mn1/3Ni1/3Co1/3)O2 active cathode material for Li-ion batteries. J Power Sources 259:195–202

    Article  CAS  Google Scholar 

  18. Han S, Qiu B, Wei Z, Xia Y, Liu Z (2014) Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layerd cathode material. J Power Sources 268:683–691

    Article  CAS  Google Scholar 

  19. Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Accounts Chem Res 45:1759–1769

    Article  CAS  Google Scholar 

  20. Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces 4:4858–4863

    Article  CAS  Google Scholar 

  21. Zhang N, Che C, Yan X, Huang Y, Li J, Ma J, Ng DHL (2017) Bacteria-inspired fabrication of Fe3O4-carbon/graphene foam for lithium-ion battery anodes. Electrochim Acta 223:39–46

    Article  CAS  Google Scholar 

  22. Wang T, Chen Z, Zhao R, Chen H (2016) Design and tailoring of a three-dimensional lithium rich layered oxide-graphene/carbon nanotubes composite for lithium-ion batteries. Electrochim Acta 211:461–468

    Article  CAS  Google Scholar 

  23. Deng Y, Fang C, Chen G (2016) The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J Power Sources 304:81–101

    Article  CAS  Google Scholar 

  24. Yang Y, Wang B, Zhu J, Zhou J, Xu Z, Fan L, Zhu J, Podila R, Rao AM, Lu B (2016) Bacteria absorption-based Mn2P2O7-carbon@reduced graphene oxides for high-performance lithium-ion battery anodes. ACS Nano 10:5516–5524

    Article  CAS  Google Scholar 

  25. Wang M, Song W, Fan L (2015) Three-dimensional interconnected network of graphene-wrapped silicon/carbon nanofiber hybrids for binder-free anodes in lithium-ion batteries. Chemelectrochem 2:1699–1706

    Article  CAS  Google Scholar 

  26. Wang Y, Feng Z, Chen J, Zhang C (2012) Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction. Mater Lett 71:54–56

    Article  CAS  Google Scholar 

  27. Zong J, Liu X (2014) Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochim Acta 116:9–18

    Article  CAS  Google Scholar 

  28. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13

    Article  CAS  Google Scholar 

  29. Zhang L, Wang S, Cai D, Lian P, Zhu X, Yang W, Wang H (2013) Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries. Electrochim Acta 91:108–113

    Article  CAS  Google Scholar 

  30. Wang B, Wang D, Wang Q, Liu T, Guo C, Zhao X (2013) Improvement of the electrochemical performance of carbon-coated LiFePO4 modified with reduced graphene oxide. J Mater Chem A 1:135–144

    Article  CAS  Google Scholar 

  31. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mat Interfaces 3:2966–2972

    Article  CAS  Google Scholar 

  32. Zhao X, Hayner CM, Kung HH (2011) Self-assembled lithium manganese oxide nanoparticles on carbon nanotube or graphene as high-performance cathode material for lithium-ion batteries. J Mater Chem 21:17297–17303

    Article  CAS  Google Scholar 

  33. Ma Y, Li X, Sun S, Hao X, Wu Y (2013) Synthesize of graphene-LiFePO4 composite porous microsphere with the enhanced rate performance. Int J Electrochem Sci 8:2842–2848

    CAS  Google Scholar 

  34. Zhou X, Wang F, Zhu Y, Liu Z (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353–3358

    Article  CAS  Google Scholar 

  35. Rui X, Zhu J, Sim D, Xu C, Zeng Y, Hng HH, Lim TM, Yan Q (2011) Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3:4752–4758

    Article  CAS  Google Scholar 

  36. Zhang Y, Chen L, Ou J, Wang J, Zheng B, Yuan H, Guo Y, Xiao D (2013) Improving the performance of a LiFePO4 cathode based on electrochemically cleaved graphite oxides with high hydrophilicity and good conductivity. J Mater Chem A 1:7933–7941

    Article  CAS  Google Scholar 

  37. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Article  CAS  Google Scholar 

  38. Wang J, Han Z (2010) The combustion behavior of polyacrylate ester/graphite oxide composites. Polym Adv Technol 17:335–340

    Article  CAS  Google Scholar 

  39. Cho TH, Park SM, Yoshio M, Hirai T, Hideshima Y (2005) Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 prepared by carbonate co-precipitation method. J Power Sources 142:306–312

    Article  CAS  Google Scholar 

  40. Julien C (2000) Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries. Solid State Ion 136:887–896

    Article  Google Scholar 

  41. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. J Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  42. Matsumoto K, Kuzuo R, Takeya K, Yamanaka A (1999) Effects of CO2 in air on Li deintercalation from LiNi1 – x–yCoxAlyO2. J Power Sources 81–82:558–561

    Article  Google Scholar 

  43. Mijung N, Lee Y, Cho J (2006) Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 composite cathode material for Li-ion cells. J Electrochem Soc 153:A935–A940

    Article  CAS  Google Scholar 

  44. Noh HJ, Youn S, Chong SY, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  45. Andersson AM, Abraham DP, Haasch R, Maclaren S, Liu J, Amine K (2002) Surface characterization of electodes from high-power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369

    Article  CAS  Google Scholar 

  46. Edström K, Gustafsson T, Thomas JO (2004) The cathode-electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403

    Article  Google Scholar 

  47. Duncan H, Abu-Lebdeh Y, Davidson IJ (2010) Study of the cathode—electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries. J Electrochem Soc 157:A528–A535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Taishan Scholar Project (No. ts201511080), China Space science and Technology Fund (2017-HT-HG-5) and Guidance fund for Discipline Construction of HITWH (WH20160201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Gao or Guangwu Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhu, Y., Jiang, Y. et al. Graphene modified Li1.2Ni0.133Co0.133Mn0.534O2 cathode material for high capacity lithium-ion batteries. J Appl Electrochem 48, 1273–1283 (2018). https://doi.org/10.1007/s10800-018-1251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1251-x

Keywords

Navigation