Skip to main content

Advertisement

Log in

Ionic liquid treated carbon nanotube sponge as high areal capacity cathode for lithium sulfur batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) treated carbon nanotube (CNT) sponges were tested as a conductive matrix and polysulfide reservoir for the cathode of lithium–sulfur batteries. X-ray photoelectron spectroscopy results confirmed that this treatment doped fluorine and oxygen on the surface of the CNT, and experimental results showed that this treatment had significantly improved adsorption of polysulfides in the CNT sponge. As a result, this sponge cathode accommodated a remarkably high sulfur areal loading of 8 mg cm−2, showing a high areal capacity of 7.1 mAh cm−2 at the 100th cycle at an areal current density of 1.28 mA cm−2 with an average capacity fading of 0.048% per cycle. The adsorbing energy of Li2S6 on the F/O-doped carbon structure was calculated using the density functional theory, confirming that the doping made the polysulfide adsorption stable particularly due to fluorine. This study provides a useful approach of simultaneously introducing both fluorine and oxygen to carbon in order to significantly improve the polysulfide adsorption on the carbon cathode and thereby obtain high areal discharge capacity, which is much more important than specific discharge capacity for actual battery operation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bauer I, Thieme S, Brückner J, Althues H, Kaskel S (2014) Reduced polysulfide shuttle in lithium–sulfur batteries using nafion-based separators. J Power Sources 251:417–422

    Article  CAS  Google Scholar 

  2. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23:5641–5644

    Article  CAS  Google Scholar 

  3. Huang J-Q, Xu Z-L, Abouali S, Garakani MA, Kim J-K (2016) Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99:624–632

    Article  CAS  Google Scholar 

  4. Fu Y, Su Y-S, Manthiram A (2014) Li2S-carbon sandwiched electrodes with superior performance for lithium-sulfur batteries. Adv Energy Mater 4:1300655

    Article  Google Scholar 

  5. Pu X, Yang G, Yu C (2014) Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries. Adv Mater 26:7456–7461

    Article  CAS  Google Scholar 

  6. Lu Y, Gu S, Guo J, Rui K, Chen C, Zhang S, Jin J, Yang J, Wen Z (2017) Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery. ACS Appl Mater Interfaces 9:14878–14888

    Article  CAS  Google Scholar 

  7. Hwang J-Y, Kim HM, Lee S-K, Lee J-H, Abouimrane A, Khaleel MA, Belharouak I, Manthiram A, Sun Y-K (2016) High-energy, high-rate, lithium–sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv Energy Mater 6:1501480

    Article  Google Scholar 

  8. Bhattacharya P, Nandasiri MI, Lv D, Schwarz AM, Darsell JT, Henderson WA, Tomalia DA, Liu J, Zhang J-G, Xiao J (2016) Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes. Nano Energy 19:176–186

    Article  CAS  Google Scholar 

  9. Pu X, Yu C (2012) Enhanced overcharge performance of nano-LiCoO2 by novel Li3VO4 surface coatings. Nanoscale 4:6743–6747

    Article  CAS  Google Scholar 

  10. Pu X, Yang G, Yu C (2014) Safe and reliable operation of sulfur batteries with lithiated silicon. Nano Energy 9:318–324

    Article  CAS  Google Scholar 

  11. Xiao Z, Yang Z, Nie H, Lu Y, Yang K, Huang S (2014) Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium–sulfur batteries. J Mater Chem A 2:8683

    Article  CAS  Google Scholar 

  12. Song J, Xu T, Gordin ML, Zhu P, Lv D, Jiang Y-B, Chen Y, Duan Y, Wang D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  13. Jung YS, Cavanagh AS, Riley LA, Kang S-H, Dillon AC, Groner MD, George SM, Lee S-H (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22:2172–2176

    Article  CAS  Google Scholar 

  14. Seh ZW, Zhang Q, Li W, Zheng G, Yao H, Cui Y (2013) Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem Sci 4:3673

    Article  CAS  Google Scholar 

  15. Sun L, Kong W, Jiang Y, Wu H, Jiang K, Wang J, Fan S (2015) Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J Mater Chem A 3:5305–5312

    Article  CAS  Google Scholar 

  16. Tang C, Zhang Q, Zhao MQ, Huang JQ, Cheng XB, Tian GL, Peng HJ, Wei F (2014) Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv Mater 26:6100–6105

    Article  CAS  Google Scholar 

  17. Wang H, Tazebay AS, Yang G, Lin H, Choi W, Yu C (2016) Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon 106:152–157

    Article  CAS  Google Scholar 

  18. Pu X, Yang G, Yu C (2015) Trapping polysulfides catholyte in carbon nanofiber sponges for improving the performances of sulfur batteries. J Electrochem Soc 162:A1396–A1400

    Article  Google Scholar 

  19. Wu F, Ye Y, Chen R, Qian J, Zhao T, Li L, Li W (2015) Systematic effect for an ultralong cycle lithium-sulfur battery. Nano Lett 15:7431–7439

    Article  CAS  Google Scholar 

  20. Yuan S, Bao JL, Wang L, Xia Y, Truhlar DG, Wang Y (2016) Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv Energy Mater 6:1501733

    Article  Google Scholar 

  21. Guo J, Yang Z, Yu Y, Abruna HD, Archer LA (2013) Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J Am Chem Soc 135:763–767

    Article  CAS  Google Scholar 

  22. Yang G, Choi W, Pu X, Yu C (2015) Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy Environ Sci 8:1799–1807

    Article  CAS  Google Scholar 

  23. Erbay C, Yang G, de Figueiredo P, Sadr R, Yu C, Han A (2015) Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. J Power Sources 298:177–183

    Article  CAS  Google Scholar 

  24. Vadahanambi S, Jung J-H, Kumar R, Kim H-J, Oh I-K (2013) An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon 53:391–398

    Article  CAS  Google Scholar 

  25. Pang Q, Nazar LF (2016) Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10:4111–4118

    Article  CAS  Google Scholar 

  26. Song J, Yu Z, Gordin ML, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16:864–870

    Article  CAS  Google Scholar 

  27. Liu S, Li Y, Hong X, Xu J, Zheng C, Xie K (2016) Reduced graphene oxide-hollow carbon sphere nanostructure cathode material with ultra-high sulfur content for high performance lithium-sulfur batteries. Electrochim Acta 188:516–522

    Article  CAS  Google Scholar 

  28. Chen J, Wu D, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J (2015) Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy 13:267–274

    Article  CAS  Google Scholar 

  29. Schneider A, Weidmann C, Suchomski C, Sommer H, Janek Jr, Brezesinski T (2015) Ionic liquid-derived nitrogen-enriched carbon/sulfur composite cathodes with hierarchical microstructure-a step toward durable high-energy and high-performance lithium–sulfur batteries. Chem Mater 27:1674–1683

    Article  CAS  Google Scholar 

  30. Schneider A, Suchomski C, Sommer H, Janek J, Brezesinski T (2015) Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries. J Mater Chem A 3:20482–20486

    Article  CAS  Google Scholar 

  31. Chung S-H, Han P, Chang C-H, Manthiram A (2017) A shell-shaped carbon architecture with high-loading capability for lithium sulfide cathodes. Adv Energy Mater. https://doi.org/10.1002/aenm.201700537

    Google Scholar 

  32. Chong WG, Huang J-Q, Xu Z-L, Qin X, Wang X, Kim J-K (2017) Lithium–sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv Funct Mater 27(4):1604815

    Article  Google Scholar 

  33. Zhai P-Y, Huang J-Q, Zhu L, Shi J-L, Zhu W, Zhang Q (2017) Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon 111:493–501

    Article  CAS  Google Scholar 

  34. Wu Z, Wang W, Wang Y, Chen C, Li K, Zhao G, Sun C, Chen W, Ni L, Diao G (2017) Three-dimensional graphene hollow spheres with high sulfur loading for high-performance lithium-sulfur batteries. Electrochim Acta 224:527–533

    Article  CAS  Google Scholar 

  35. Song J, Xu T, Gordin ML, Zhu P, Lv D, Jiang YB, Chen Y, Duan Y, Wang D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  36. Qiu Y, Li W, Zhao W, Li G, Hou Y, Liu M, Zhou L, Ye F, Li H, Wei Z (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano lett 14:4821–4827

    Article  CAS  Google Scholar 

  37. Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew Chem Int Ed 54:4325–4329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial supports from the US National Science Foundation (Award Numbers: IIP 1701200, IIP 1655429, CHE 1410272) and Texas A&M Engineering Experiment Station, and permission to use the Laboratory for Molecular Simulation at Texas A&M University, which was supported by the US National Science Foundation (Award Number: CHE 0541587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choongho Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H.T., Yang, G., Tsao, YY.T. et al. Ionic liquid treated carbon nanotube sponge as high areal capacity cathode for lithium sulfur batteries. J Appl Electrochem 48, 487–494 (2018). https://doi.org/10.1007/s10800-018-1181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1181-7

Keywords

Navigation