Skip to main content

Advertisement

Log in

Enteromorpha prolifera-derived carbon as a high-performance cathode material for lithium–sulfur batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel carbon material for use in lithium–sulfur batteries is fabricated from the seaweed Enteromorpha prolifera, a renewable source that grows rapidly in the sea near Qingdao, China, during the summer. The E. prolifera-derived carbon (EPC) possesses a multilevel micropore–mesopore structure and a certain amount of oxygen- and nitrogen-containing functional groups. In addition, the hierarchical porous carbon also possesses a high specific surface area of 3536.58 m2 g−1 and a large pore volume of 1.754 cm3 g−1. The carbon can thus be loaded with a high sulfur content (EPC/S, 74.8 wt%), making it a promising candidate for use as the cathode material in lithium–sulfur batteries. The EPC was characterized using field-emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, the Brunauer–Emmett–Teller method, and other methods. The EPC/S cathode exhibited superior electrochemical performance; the first discharge capacity was as high as 1328 mA h g−1 at 0.1 C. Further, the capacity was 520 mA h g−1 after 100 cycles at 0.5 C and 510 mA h g−1 after 100 cycles at 1 C.

Graphical Abstract

Enteromorpha prolifera-derived carbon, a novel renewable material, possesses abundant functional groups, a high specific surface area and a large pore volume making it a promising candidate as a high-performance cathode material for lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783. doi:10.1016/j.jpowsour.2014.05.111

    Article  CAS  Google Scholar 

  2. Suo L, Hu Y, Li H, Wang Z, Chen L, Huang X (2013) Progress on high-energy density lithium–sulfur batteries. Chin Sci Bull (Chinese Version) 31 (58):3172. doi:10.1360/972013-789

    Article  Google Scholar 

  3. Cui Y, Fu Y (2015) Polysulfide transport through separators measured by a linear voltage sweep method. J Power Sources 286:557–560. doi:10.1016/j.jpowsour.2015.04.033

    Article  CAS  Google Scholar 

  4. Xu R, Lu J, Amine K (2015) Progress in mechanistic understanding and characterization techniques of Li-S Batteries. Adv Energy Mater 5 (16):1500408. doi:10.1002/aenm.201500408

    Article  Google Scholar 

  5. Cao R, Xu W, Lv D, Xiao J, Zhang J-G (2015) Anodes for rechargeable lithium–sulfur batteries. Adv Energy Mater 5 (16):1402273. doi:10.1002/aenm.201402273

    Article  Google Scholar 

  6. Nunes-Pereira J, Costa CM, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398. doi:10.1016/j.jpowsour.2015.02.010

    Article  CAS  Google Scholar 

  7. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev doi:10.1039/c5cs00410a

    Google Scholar 

  8. Zhang S, Ueno K, Dokko K, Watanabe M (2015) Recent advances in electrolytes for lithium–sulfur batteries. Adv Energy Mater 5 (16):1500117. doi:10.1002/aenm.201500117

    Article  Google Scholar 

  9. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53. doi:10.1039/c2ee23284g

    Article  CAS  Google Scholar 

  10. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38 (9):2520–2531. doi:10.1039/b813846j

    Article  CAS  Google Scholar 

  11. Kisu K, Iwama E, Naoi W, Simon P, Naoi K (2016) Electrochemical kinetics of nanostructure LiFePO4/graphitic carbon electrodes. Electrochem Commun 72:10–14. doi:10.1016/j.elecom.2016.08.013

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang L, Wu Y, Zhong Y, Hu Y, Lou XW (2015) Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chem Commun 51(32):6921–6924. doi:10.1039/c5cc01251a

    Article  CAS  Google Scholar 

  13. Xu G, Ding B, Shen L, Nie P, Han J, Zhang X (2013) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. Journal of Materials Chemistry A 1(14):4490. doi:10.1039/c3ta00004d

    Article  CAS  Google Scholar 

  14. Cui J, Xi Y, Chen S, Li D, She X, Sun J, Han W, Yang D, Guo S (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater doi:10.1002/adfm.201603933

    Google Scholar 

  15. Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110. doi:10.1016/j.electacta.2015.12.002

    Article  CAS  Google Scholar 

  16. J.R. Zhang XLT, G.Q. Li (2010) Study of entermorpha prolifera. Period Ocean Univ China 40:093–095

    Google Scholar 

  17. Xu XCH DL, Yang WC (2003) Analysis of nutrition composition of entermorpha prolifera. J Zhejiang Ocean Univ 22(4):318–320

    Google Scholar 

  18. Byon HR, Gallant BM, Lee SW, Shao-Horn Y (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv Funct Mater 23(8):1037–1045. doi:10.1002/adfm.201200697

    Article  CAS  Google Scholar 

  19. Jin LM, He F, Cai WL, Huang JX, Liu BH, Li ZP (2016) Preparation, characterization and application of modified macroporous carbon with CoN site for long-life lithium–sulfur battery. J Power Sources 328:536–542. doi:10.1016/j.jpowsour.2016.08.060

    Article  CAS  Google Scholar 

  20. Song J, Yu Z, Gordin ML, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett 16(2):864–870. doi:10.1021/acs.nanolett.5b03217

    Article  CAS  Google Scholar 

  21. Wang X, Liu C-G, Neff D, Fulvio PF, Mayes RT, Zhamu A, Fang Q, Chen G, Meyer HM, Jang BZ, Dai S (2013) Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J Mater Chem A 1(27):7920. doi:10.1039/c3ta11342f

    Article  CAS  Google Scholar 

  22. Wang Q, Cao Q, Wang X, Jing B, Kuang H, Zhou L (2013) A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. J Power Sources 225:101–107. doi:10.1016/j.jpowsour.2012.10.022

    Article  CAS  Google Scholar 

  23. Zhu S, Wang Y, Jiang J, Yan X, Sun D, Jin Y, Nan C, Munakata H, Kanamura K (2016) Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li-S batteries. ACS App Mater Interfaces 8 (27):17253–17259. doi:10.1021/acsami.6b04355

    Article  CAS  Google Scholar 

  24. Li ZX, Zhang X, Liu YC, Zou KY, Yue ML (2016) Controlling the BET surface area of porous carbon by using the Cd/C ratio of a Cd-MOF precursor and enhancing the capacitance by activation with KOH. Chemistry. doi:10.1002/chem.201603072

    Google Scholar 

  25. Tang H, Gao P, Liu X, Zhu H, Bao Z (2014) Bio-derived calcite as a sustainable source for graphene as high-performance electrode material for energy storage. J Mater Chem A 2(38):15734–15739. doi:10.1039/c4ta03235g

    Article  CAS  Google Scholar 

  26. Jeon JW, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, McGrail BP, Nune SK (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6 (10):7214–7222. doi:10.1021/am500339x

    Article  CAS  Google Scholar 

  27. Ma F, Zhao H, Sun L, Li Q, Huo L, Xia T, Gao S, Pang G, Shi Z, Feng S (2012) A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. J Mater Chem 22(27):13464. doi:10.1039/c2jm32960c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the “100 Talents” program of Chinese Academy of Sciences and the CAS Key Laboratory of Bio-based Materials of Qingdao Institute of Bioenergy and Bioprocess Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcheng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Z., Zhu, S. et al. Enteromorpha prolifera-derived carbon as a high-performance cathode material for lithium–sulfur batteries. J Appl Electrochem 47, 631–639 (2017). https://doi.org/10.1007/s10800-017-1068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1068-z

Keywords

Navigation