Skip to main content
Log in

Energy-saving synthesis of electrolytic manganese dioxide using oxygen cathode with Pt/TiO2-CNx nanocatalysts

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The awareness of energy, environment, and economy for electrolysis has required the development of new methods to prevent environmental pollution, such as the emission of acid fog, CO2, and SO2. Hence, the use of gas diffusion electrode as a cathode in the electrodeposition of manganese dioxide to save energy and protect the environment is attracting research interest. In this work, a gas diffusion electrode consisting of a mixture of Pt/TiO2-CNx nanocatalysts and two different additive conductor supports that activate carbon and acetylene black were synthesized. The Pt/TiO2-CNx nanocatalysts and Pt/TiO2-CNx gas diffusion electrode were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The Pt/TiO2-CNx nanowire catalyst showed strong interaction between the Pt nanoparticles (~2.21 nm) and TiO2-CNx nanowire support. Results of electrochemical tests in 120 g of MnSO4 + 30 g of H2SO4 at 80 °C show that the Pt/TiO2-CNx gas diffusion electrode used in the electrodeposition of manganese dioxide could save electric energy by approximately 60%. Furthermore, the lifetime of the gas diffusion electrode of Pt/TiO2-CNx nanocatalysts was about twofold longer than that of the gas diffusion electrode of Pt/C and Pt/TiO2 nanocatalysts. The Pt/TiO2-CNx nanowire catalyst exhibited high anti-acid corrosion, activity, and stability, indicating its potential important application in the electrodeposition of manganese dioxide.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XL, Zhang YL, Zhong Q, Li TT, Li HY, Huang JM (2014) Appl Surf Sci 313:877

    Article  CAS  Google Scholar 

  2. Donne SW, Kennedy JH (2004) J Appl Electrochem 34:159

    Article  CAS  Google Scholar 

  3. Xu CN, Miyazaki K, Watanabe T (1998) Sensor Actuators B 46:87

    Article  CAS  Google Scholar 

  4. Xiao F, Li YQ, Zan XL, Liao K, Xu R, Duan HW (2012) Adv Funct Mater 22:2487

    Article  CAS  Google Scholar 

  5. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) ACS NANO 7:174

    Article  CAS  Google Scholar 

  6. Kumar VG, Gnanaraj JS, David SB, Pickup DM, Van-Eck ERH, Gedanke A, Aurbach D (2003) Chem Mater 15:4211

    Article  CAS  Google Scholar 

  7. Qu DY (1999) J Appl Electrochem 29:511

    Article  CAS  Google Scholar 

  8. Tang J, Meng HM, Huang LL (2014) RSC Adv 4:16512

    Article  CAS  Google Scholar 

  9. Tang J, Meng HM, Li S, Yu MH, Li H, Shi JH (2015) Electrochim Acta 170:92

    Article  CAS  Google Scholar 

  10. Bojdi MK, Behbahani M, Sahragard A, Amin BG, Fakhari A, Bagheri A (2014) Electrochim Acta 149:108

    Article  CAS  Google Scholar 

  11. Bojdi MK, Behbahani M, Omidi F, Hesam G (2016) New J Chem 40:4519

    Article  Google Scholar 

  12. Bojdi MK, Mashhadizadeh MH, Behbahani M, Farahani A, Davarani SSH, Bagheri A (2014) Electrochim Acta 136:59

    Article  CAS  Google Scholar 

  13. Bojdi MK, Behbahani M, Najafi M, Bagheri A, Omidi F, Salimi S (2015) Electroanalysis 27:2458

    Article  Google Scholar 

  14. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Adv Funct Mater 21:2366

    Article  CAS  Google Scholar 

  15. Hosseini H, Behbahani M, Mahyari M, Kazerooni H, Bagheri A, Shaabani A (2014) Biosens Bioelectron 59:412

    Article  CAS  Google Scholar 

  16. Bojdi MK, Behbahani M, Mashhadizadeh MH, Bagheri A, Davarani SSH, Farahani A (2015) Mat Sci Eng C 48:213

    Article  Google Scholar 

  17. Bojdi MK, Behbahani M, Hesam G, Mashhadizadeh MH (2016) RSC ADV 6:32374

    Article  CAS  Google Scholar 

  18. Kadirgan F, Kannan AM, Atilan T, Beyhan S, Ozenler SS, Suzer S, Yörür A (2009) Int J Hydrog Energy 34:9450

    Article  CAS  Google Scholar 

  19. Lia B, Higginsc DC, Xiao QF, Yang DJ, Zhng C, Cai M, Chen ZW, Ma JX (2015) Appl Catal B 162:133

    Article  Google Scholar 

  20. Ioroi T, Akita T, Asahi M, Yamazaki SI, Siroma Z, Fujiwara N, Yasuda K (2013) J Power Sources 223:183

    Article  CAS  Google Scholar 

  21. Kiros Y, Pirjamali M, Bursell M (2006) Electrochim Acta 51:3346

    Article  CAS  Google Scholar 

  22. Chatenet M, Aurousseau M, Durand R, Andolfatto F (2003) J Electrochem Soc 150:D47

    Article  CAS  Google Scholar 

  23. Chung S, Choun M, Jeong B, Lee J (2016) J Energy Chem 25:258

    Article  Google Scholar 

  24. Lin KJ, Lu YX, Du SF, Li XY, Dong HS (2016) Int J Hydrog Energy 41:7622

    Article  CAS  Google Scholar 

  25. Jia JC, Wang H, Ji S, Yang HJ, Li XS, Wang RF (2014) Electrochim Acta 141:13

    Article  CAS  Google Scholar 

  26. Womack M, Vendan M, Molian P (2004) Appl Surf Sci 221:99

    Article  CAS  Google Scholar 

  27. Li ZS, Li YY, Jiang SP, He GQ, Shen PK (2014) J Mater Chem A 2:16898

    Article  CAS  Google Scholar 

  28. Easton EB, Astill TD, Holdcroft S (2005) J Electrochem Soc 152:A752

    Article  CAS  Google Scholar 

  29. Bauer A, Lee K, Song CJ, Xie YS, Zhang JJ, Hui R (2010) J Power Sources 195:3105

    Article  CAS  Google Scholar 

  30. Huang K, Sasaki K, Adzic RR, Xing YC (2012) J Mater Chem 22:16824

    Article  CAS  Google Scholar 

  31. Jiang ZZ, Wang ZB, Chu YY, Gu DM, Yin GP (2011) Energy Environ Sci 4:728

    Article  CAS  Google Scholar 

  32. Hillman AR, Dong QZ, Mohamoud MA, Efimov L (2010) Electrochim Acta 55:8142

    Article  CAS  Google Scholar 

  33. Fan Y, Yang ZJ, Huang P, Zhang X, Liu YM (2013) Electrochim Acta 105:157

    Article  CAS  Google Scholar 

  34. Li W, Bai Y, Li FJ, Liu C, Chan KY, Feng X, Lu XH (2012) J Mater Chem 22:4025

    Article  CAS  Google Scholar 

  35. XiaoYH, Zhan GH, Fu ZG (2014) Electrochim Acta 141:279

    Article  Google Scholar 

  36. Senevirathne K, Hui R, Campbell S, Ye S, Zhang J (2012) Electrochim Acta 59:538

    Article  CAS  Google Scholar 

  37. Wu G, Chen YS, Xu BQ (2005) Electrochem Commun 7:1237

    Article  CAS  Google Scholar 

  38. Li XG, Hsing IM (2006) Electrochim Acta 51:5250

    Article  CAS  Google Scholar 

  39. Oh HS, Oh JG, Lee WH, Kim HJ, Kim H (2011) Int J Hydrog Energy 36:8181

    Article  CAS  Google Scholar 

  40. Furuya N, Aikawa H (2000) Electrochim Acta 45:4251

    Article  CAS  Google Scholar 

  41. Zhang H, Meng HM (2014) Sens Transducers 169:296

    CAS  Google Scholar 

  42. Tang Y, Li YJ, Sun YZ, Wang JX, Chen YM, Yang XJ, Wan PY (2013) Electrochem Commun 27:108

    Article  CAS  Google Scholar 

  43. Gurau V, Bluemle MJ, Castro ESD, Tsou YM, Jr JAM, Jr TAZ (2006) J Power Sources 160:1156

    Article  CAS  Google Scholar 

  44. Devennry M, Donne SW, Gorer S (2004) J Appl Electrochem 34:643

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of China (51274027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Meng, H. & He, Y. Energy-saving synthesis of electrolytic manganese dioxide using oxygen cathode with Pt/TiO2-CNx nanocatalysts. J Appl Electrochem 47, 653–659 (2017). https://doi.org/10.1007/s10800-017-1065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1065-2

Keywords

Navigation