Skip to main content
Log in

Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen reduction electrode is one of the important electrode materials for energy technologies because of the technical importance of oxygen reduction reaction (ORR) in the development of fuel cells and batteries. In this work, a fast, simple and applicable electrodeposition process has been used to modify the oxygenated functionalized carbon nanotubes (FCNTs) with cobalt oxide nanoparticles (CoOx) for use as an active catalyst electrode for ORR in alkaline medium. The prepared electrodes were characterized with structural techniques (XRD and TEM) to confirm the deposition of CoOx nanoparticle on FCNTs surface. The electrocatalytic activity of the prepared electrodes towards ORR was evaluated using different electrochemical methods such as cyclic voltammetry, linear sweep voltammetry combined with rotating disk electrode technique and chronoamperometry. Based on RDE measurements, the CoOx/FCNTs showed higher electrocatalytic activity and the mechanism of ORR proceeds via the four-electron mechanism, the favourable mechanism shown by the noble metal catalysts. However, the CoOx electrode exhibited only the two-electron mechanism with formation of hydrogen peroxide, rather than the four-electron mechanism, while the FCNTs electrode exhibited the two parallel mechanisms favouring four-electron mechanism only at higher overpotential. These results indicate the synergistic effect of the coupling between FCNTs and CoOx nanoparticles catalyzing the ORR via the direct four-electron mechanism. Such a synergistic effect is assumed to be attributed to the formation of an active interface between the FCNTs and CoOx resulting in highly catalytic active sites that allow the adsorption of oxygen and simultaneous reduction and/or the chemical decomposition of the intermediates, mainly the peroxide intermediate formed during the two-electron pathway mechanism. Moreover, compared to the benchmarked catalyst (Pt/C), the non-precious CoOx/FCNTs electrode showed both the higher stability under continuous ORR at a fixed potential for 6 h and higher tolerance for methanol poisoning. The results reported in this work could contribute to the development of high stable and fuel poisoning tolerance cathode electrodes for direct alkaline alcohol fuel cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Sum T, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667. doi:10.1021/acscatal.5b00524

    Article  CAS  Google Scholar 

  2. Lee WJ, Maiti NU, Lee MJ, Lim J, Han HT, Kim SO (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun 50:6818–6830. doi:10.1039/C4CC00146J

    Article  CAS  Google Scholar 

  3. Yan J, Lu H, Huang Y, Fu J, Mo S, Wei C, Miao YE, Liu T (2015) Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reaction. J Mater Chem A 3:1–9. doi:10.1039/C5TA06217A

    Article  Google Scholar 

  4. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868. doi:10.1039/C2EE22238H

    Article  CAS  Google Scholar 

  5. Yang Z, Nie H, Chen X, Chen X, Huang S (2013) Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J Power Sources 236:238–249. doi:10.1016/j.jpowsour.2013.02.057

    Article  CAS  Google Scholar 

  6. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182. doi:10.1016/j.jpowsour.2005.05.069

    Article  CAS  Google Scholar 

  7. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176. doi:10.1021/jp201991j

    Article  CAS  Google Scholar 

  8. Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96. doi:10.1016/j.jcat.2006.01.022

    Article  CAS  Google Scholar 

  9. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110. doi:10.1039/C3TA14043A

    Article  CAS  Google Scholar 

  10. Zhang G, Lu W, Cao F, Xiao Z, Zheng X (2016) N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. J Power Sources 302:114–125. doi:10.1016/j.jpowsour.2015.10.055

    Article  CAS  Google Scholar 

  11. Zhong G, Wang H, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503. doi:10.1016/j.jpowsour.2015.04.021

    Article  CAS  Google Scholar 

  12. Yang H, Wang H, Ji S, Linkov V, Wang R (2014) Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction. Int J Hydrog Energy 39:3739–3745. doi:10.1016/j.ijhydene.2013.12.160

    Article  CAS  Google Scholar 

  13. Ma Y, Wang H, Ji S, Goh J, Feng H, Wang R (2014) Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta 133:391–398. doi:10.1016/j.electacta.2014.04.080

    Article  CAS  Google Scholar 

  14. Chung H, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. doi:10.1038/ncomms2944

    Article  Google Scholar 

  15. Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. Am Chem Soc 134:15849–15857. doi:10.1021/ja305623m

    Article  CAS  Google Scholar 

  16. Xu J, Yu Q, Wu C, Guan L (2015) Oxygen reduction electrocatalysts based on spatially confined cobalt monoxide nanocrystals on holey N-doped carbon nanowires: the enlarged interfacial area for performance improvement. Mater Chem A 3:21647–21654. doi:10.1039/C5TA05757D

    Article  CAS  Google Scholar 

  17. Wang S, Cui Z, Cao M (2015) A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem A Eur J 21:2165–2172. doi:10.1002/chem.201404884

    Article  CAS  Google Scholar 

  18. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. doi:10.1016/j.electacta.2008.02.012

    Article  CAS  Google Scholar 

  19. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130. doi:10.1039/C0EE00011F

    Article  CAS  Google Scholar 

  20. Liu J, Jiang L, Tang Q, Zhang B, Su DS, Wang S, Sun G (2012) Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5:2315–2318. doi:10.1002/cssc.201200563

    Article  CAS  Google Scholar 

  21. Liu J, Jiang L, Zhang B, Jin J, Su DS, Wang S, Sun G (2014) Controllable synthesis of cobalt monoxide nanoparticles and the size-dependent activity for oxygen reduction reaction. ACS Catal 4:2998–3001. doi:10.1021/cs500741s

    Article  CAS  Google Scholar 

  22. Su Z, Zhu Y, Jiang H, Shen J, Yang X, Zou W, Chen J, Li C (2014) Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6:15080–15089. doi:10.1039/C4NR04357J

    Article  CAS  Google Scholar 

  23. Herrmann I, Kramm UI, Fiechte S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287. doi:10.1016/j.electacta.2009.02.056

    Article  CAS  Google Scholar 

  24. Xu P, Chen W, Wang Q, Zhu T, Wu M, Qiao J, Chen Z, Zhang J (2015) Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Adv 5:6195–6206. doi:10.1039/C4RA11643G

    Article  CAS  Google Scholar 

  25. Hernandez-Fernandez P, Baranton S, Rojas S, Ocon P, Leger JM, Fierro JLG (2011) Insights into the effects of functional groups on carbon nanotubes for the electrooxidation of methanol. Langmuir 27:9621–9629. doi:10.1021/la2011452

    Article  CAS  Google Scholar 

  26. Yang J, Zhang W, Gunasekaran S (2011) A low-potential, H2O2-assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochim Acta 56:5538–5544. doi:10.1016/j.electacta.2011.03.087

    Article  CAS  Google Scholar 

  27. Vashista SK, Zheng D, Al-Rubeaand K, Luonge JHT, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188. doi:10.1016/j.biotechadv.2010.10.002

    Article  Google Scholar 

  28. Helia H, Pishahang J (2014) Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim Acta 123:518–526. doi:10.1016/j.electacta.2014.01.032

    Article  Google Scholar 

  29. Wang Y, Zhang D, Liu H (2010) A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. J Power Sources 195:3135–3139. doi:10.1016/j.jpowsour.2009.11.112

    Article  CAS  Google Scholar 

  30. Wu J, Zhang D, Wang Y, Wan Y, Hou B (2012) Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Source 198:122–126. doi:10.1016/j.jpowsour.2011.10.007

    Article  CAS  Google Scholar 

  31. Nassr ABAA, Sinev I, Grünert W, Bron M (2013) PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl Catal B Environ 142–143:849–860. doi:10.1016/j.apcatb.2013.06.013

    Article  Google Scholar 

  32. Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297. doi:10.1016/0013-4686(67)80007-0

    Article  CAS  Google Scholar 

  33. Xia W, Wang Y, Bergstra R, Kundu S, Muhler M (2007) Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Appl Surf Sci 254:247–250. doi:10.1016/j.apsusc.2007.07.120

    Article  CAS  Google Scholar 

  34. Steimecke M, Rümmler S, Bron M (2015) The effect of rapid functionalization on the structural and electrochemical properties of high-purity carbon nanotubes. Electrochim Acta 163:1–8. doi:10.1016/j.electacta.2015.02.142

    Article  CAS  Google Scholar 

  35. Yu J, Chen G, Sunarso J, Zhu Y, Ran R, Zhu Z, Zhou W, Zongping S (2016) Cobalt oxide and cobalt-graphitic carbon core–shell based catalysts with remarkably high oxygen reduction reaction activity. Adv Sci. doi:10.1002/advs.201600060

    Google Scholar 

  36. Heli H, Yadegari H (2010) Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization. Electrochim Acta 55:2139–2148. doi:10.1016/j.electacta.2009.11.047

    Article  CAS  Google Scholar 

  37. Kruusenberg I, Alexeyeva N, Tammeveski K (2009) The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon 47:651–658. doi:10.1016/j.carbon.2008.10.032

    Article  CAS  Google Scholar 

  38. Kruusenberg I, Marandi M, Sammelselg V, Tammeveski K (2009) Hydrodynamic deposition of carbon nanotubes onto HOPG: the reduction of oxygen on CNT/HOPG electrodes in alkaline solution. Electrochem Solid State Lett 12:F31–F34. doi:10.1149/1.3202406

    Article  CAS  Google Scholar 

  39. Zhong G, Wang H, Yu H, Wang H, Peng F (2016) Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction. Electrochim Acta 190:49–56. doi:10.1016/j.electacta.2015.12.216

    Article  CAS  Google Scholar 

  40. Maa Z, Guoa C, Yina Y, Zhanga Y, Wua H, Chena C (2015) The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 160:357–362. doi:10.1016/j.electacta.2015.02.053

    Article  Google Scholar 

  41. Wang Y, Wang Z, Wu X, Liu X, Li M (2016) Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim Acta 192:196–204. doi:10.1016/j.electacta.2016.01.201

    Article  CAS  Google Scholar 

  42. Demarconnay L, Coutanceau C, Léger JM (2008) Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta 53:3232–3241. doi:10.1016/j.electacta.2007.07.006

    Article  CAS  Google Scholar 

  43. El-Deab MS, El-Nowihy GH, Mohammad AM (2015) Synergistic enhancement of the electro-oxidation of methanol at tailor-designed nanoparticle-based CoOx/MnOx/Pt ternary catalysts. Electrochim Acta 165:402–409. doi:10.1016/j.electacta.2015.02.231

    Article  CAS  Google Scholar 

  44. Liu Y, Higgins DC, Wu J, Fowler M, Chen Z (2013) Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction. Electrochem Commun 3:125–129. doi:10.1016/j.elecom.2013.05.035

    Article  Google Scholar 

Download references

Acknowledgements

A.Z. Al-Hakemy gratefully acknowledges the SRAT-City for the internship to carry out the experimental work of his master thesis in its laboratories. The authors are greatly thankful for Mr. Osama Khamis Ahmed for his help with XRD measurements. AB.A. Nassr acknowledges the financial support from German Academic Exchange Service (DAAD), Bonn, Germany, on the Grant for Small equipment. AB.A. Nassr acknowledges the great support and help from Prof. Michael Bron, Professor of Industrial Chemistry at Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany, with materials and accessories that were necessary to achieve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Bakr Ahmed Amine Nassr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hakemy, A.Z., Nassr, A.B.A.A., Naggar, A.H. et al. Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction. J Appl Electrochem 47, 183–195 (2017). https://doi.org/10.1007/s10800-016-1027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1027-0

Keywords

Navigation