Skip to main content
Log in

Thick-film electrochemical growth of Al-doped zinc oxide

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

\(45\,\pm \,5\,{\mathrm {\upmu m}}\)-thick Al:ZnO films were galvanostatically grown. The propensity for \({\mathrm{Al}}^{3+}\) to both be absorbed into the ZnO film as well as react with \({\mathrm{OH}}^-\) in the growth solution required developing a method to continuously introduce new dopant to the growth solution to maintain dopant levels throughout the deposition. Film thickness, transparency, morphology, aluminium content, crystallinity, and electrical resistivity as a function of approximate \({\mathrm{Al}}({\mathrm{NO}}_3)_3\) dopant concentration was examined. Limits in dopant concentration during growth were determined, with concentrations exceeding \(10\,{\mathrm {\upmu mol\,L^{-1}}}\) causing layers of aluminium hydroxide to deposit on the film. Low-temperature annealing was performed to encourage thermal decomposition of any remaining \({\mathrm{Zn}}({\mathrm{OH}})_2\) in the film, and the resulting effects on film opacity, morphology, and resistivity were described. A transparent film consisting of 1.72% molar concentration of aluminium was produced with a through-film resistivity of \(400\pm 100\,{\mathrm {\Omega \,cm}}\), \(25{\times}\) less than the undoped film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098. doi:10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  2. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301. doi:10.1063/1.1992666

    Article  Google Scholar 

  3. KoÅĆodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxideâĂŤ from synthesis to application: a review. Materials 7(4):2833–2881. doi:10.3390/ma7042833

    Article  Google Scholar 

  4. Homm G, Petznick S, Gather F, Henning T, Heiliger C, Meyer BK, Klar PJ (2011) Effect of interface regions on the thermoelectric properties of alternating ZnO/ZnO: Al stripe structures. J Electron Mater 40(5):801–806. doi:10.1007/s11664-011-1574-4

    Article  CAS  Google Scholar 

  5. Abutaha AI, Sarath Kumar SR, Alshareef HN (2013) Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films. Appl Phys Lett 102(5):053507. doi:10.1063/1.4790644

    Article  Google Scholar 

  6. Xu L, Guo Y, Liao Q, Zhang J, Xu D (2005) Morphological control of ZnO nanostructures by electrodeposition. J Phys Chem B 109(28):13519–13522. doi:10.1021/jp051007b

    Article  CAS  Google Scholar 

  7. Cui JB, Soo YC, Chen TP, Gibson UJ (2008) Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays. J Phys Chem C 112(12):4475–4479. doi:10.1021/jp710855z

    Article  CAS  Google Scholar 

  8. Sielmann C, Stoeber B, Walus K (2016) Chloride contamination of electrochemically grown zinc oxide thick films. J Appl Electrochem. doi:10.1007/s10800-016-1018-1

    Google Scholar 

  9. Nadarajah A, Word RC, Meiss J, Konenkamp R (2008) Flexible inorganic nanowire light-emitting diode. Nano Lett 8(2):534–537. doi:10.1021/nl072784l

    Article  CAS  Google Scholar 

  10. Könenkamp R, Boedecker K, Lux-Steiner MC, Poschenrieder M, Zenia F, Levy-Clement C, Wagner S (2000) Thin film semiconductor deposition on free-standing ZnO columns. Appl Phys Lett 77(16):2575–2577. doi:10.1063/1.1319187

    Article  Google Scholar 

  11. Kemell M, Dartigues F, Ritala M, Leskelä M (2003) Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells. Thin Solid Films 434(1):20–23. doi:10.1016/S0040-6090(03)00464-4

    Article  CAS  Google Scholar 

  12. She G, Chen X, Wang Y, Qi X, Mu L, Shi W (2012) Electrodeposition of Al-doped ZnO nanoflowers with enhanced photocatalytic performance. J Nanosci Nanotechnol 12(3):2756–2760. doi:10.1166/jnn.2012.5744

    Article  CAS  Google Scholar 

  13. Haller S, Rousset J, Renou G, Lincot D (2010) Electrodeposition of nanoporous ZnO on Al-doped ZnO leading to a highly organized structure for integration in Dye Sensitized Solar Cells. EPJ Photovolt 2:20401. doi:10.1051/epjpv/2011021

    Article  Google Scholar 

  14. Chu D (2012) Growth and electrical properties of doped ZnO by electrochemical deposition. New J Glass Ceram 02(01):13–16. doi:10.4236/njgc.2012.21003

    Article  CAS  Google Scholar 

  15. Cheng H, Xu X, Hng H, Ma J (2009) Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram Int 35(8):3067–3072. doi:10.1016/j.ceramint.2009.04.010

    Article  CAS  Google Scholar 

  16. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37(17):10244–10248. doi:10.1103/PhysRevB.37.10244

    Article  CAS  Google Scholar 

  17. Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J Mater Chem 7(1):85–90. doi:10.1039/A602506D

    Article  CAS  Google Scholar 

  18. Hosono E, Fujihara S, Kimura T (2004) Fabrication and electrical properties of micro/nanoporous ZnO âĹű Al films. J Mater Chem 14(5):881–886. doi:10.1039/B314404F

    Article  CAS  Google Scholar 

  19. Fang TH, Kang SH (2010) Physical properties of ZnO: Al nanorods for piezoelectric nanogenerator application. Curr Nanosci 6(5):505–511

    Article  CAS  Google Scholar 

  20. Wang L, Tsan D, Stoeber B, Walus K (2012) Substrate-free fabrication of self-supporting ZnO nanowire arrays. Adv Mater 24(29):3999–4004. doi:10.1002/adma.201200928

    Article  CAS  Google Scholar 

  21. Guo X, Xu S, Zhao L, Lu W, Zhang F, Evans DG, Duan X (2009) One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties. Langmuir 25(17):9894–9897. doi:10.1021/la901012w

    Article  CAS  Google Scholar 

  22. Koh YW, Lin M, Tan CK, Foo YL, Loh KP (2004) Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat. J Phys Chem B 108(31):11419–11425. doi:10.1021/jp049134f

    Article  CAS  Google Scholar 

  23. Kaga H, Kinemuchi Y, Tanaka S, Makiya A, Kato Z, Uematsu K, Watari K (2006) Preparation and thermoelectric property of highly oriented Al-doped ZnO ceramics by a high magnetic field. Jpn J Appl Phys 45(45):L1212–L1214. doi:10.1143/JJAP.45.L1212

    Article  CAS  Google Scholar 

  24. Shinagawa T, Chigane M, Murase K, Izaki M (2012) Drastic change in electrical properties of electrodeposited ZnO: systematic study by Hall effect measurements. J Phys Chem C 116(30):15925–15931. doi:10.1021/jp304688v

    Article  CAS  Google Scholar 

  25. Ohtaki M, Tsubota T, Eguchi K, Arai H (1996) High-temperature thermoelectric properties of (Zn\(_{1-x}\)Al\(_x\))O. J Appl Phys 79(3):1816–1818. doi:10.1063/1.360976

    Article  CAS  Google Scholar 

  26. Sielmann C, Walus K, Stoeber B (2015) Zinc exhaustion in ZnO electrodeposition. Thin Solid Films 592(Part A):76–80. doi:10.1016/j.tsf.2015.08.041

    Article  CAS  Google Scholar 

  27. Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103(2):203–207. doi:10.1111/j.1365-2818.1975.tb03895.x

    Article  Google Scholar 

  28. Wu Z (1987) Standardless EDS analysis of bulk and thin specimens. J Electron Microsc Tech 7(4):323–329. doi:10.1002/jemt.1060070412

    Article  CAS  Google Scholar 

  29. Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487(1):40–48. doi:10.1016/j.tsf.2005.01.032

    Article  CAS  Google Scholar 

  30. Wellings JS, Chaure NB, Heavens SN, Dharmadasa IM (2008) Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516(12):3893–3898. doi:10.1016/j.tsf.2007.07.156

    Article  CAS  Google Scholar 

  31. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater. doi:10.1155/2012/624520

  32. Izaki M, Omi T (1996) Transparent zinc oxide films prepared by electrochemical reaction. Appl Phys Lett 68(17):2439. doi:10.1063/1.116160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) (Grant Number RGPIN 327628-11), the Canadian Foundation for Innovation (CFI), and the Canada Research Chairs program (Grant Number 950-228738). The authors also thank Suresha Mahadeva for his assistance with film characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Sielmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sielmann, C., Siller, V., Stoeber, B. et al. Thick-film electrochemical growth of Al-doped zinc oxide. J Appl Electrochem 47, 85–93 (2017). https://doi.org/10.1007/s10800-016-1019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1019-0

Keywords

Navigation