Skip to main content
Log in

Insights into electrochemical behavior and anodic oxidation processing of graphite matrix in aqueous solutions of sodium nitrate

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of graphite matrix from the simulative fuel elements for high-temperature gas-cooled reactor was investigated experimentally using NaNO3 solution as an electrolyte. The intercalation and oxidation reactions of graphite were investigated by means of cyclic voltammetry. In addition, the morphological changes of the graphite anodes at predetermined intervals of time during the electro-oxidation process were examined by scanning electron microscopy. The structural transformation of graphite was systematically characterized by different methods. Results showed that the electro-oxidation process induced oxygen-containing groups (i.e., hydroxyl, epoxide, carbonyl/ketone, and carboxyl groups) into the graphite backbone. Electrolytic graphite oxide presented a heterogeneous, indeterminate, and disordered system composed of crystalline and amorphous phases. The structure and microstructure of nuclear graphite, particularly its cracks and defects, primarily determined its destruction pathway during the electrolytic process. The mechanism of graphite lattice destruction could be attributed to the complicated interplay of water electrolysis, anionic intercalation, and gas evolution. The mechanical force caused by gas eruptions among the graphite lattice is the most important and essential factor favoring disintegration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang C, Tang Y, Zhu J, Zou Y, Li J, Ni X (2002) Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor. Nucl Eng Des 218:91–102

    Article  CAS  Google Scholar 

  2. Sawa K, Ueta S (2004) Research and development on HTGR fuel in the HTTR project. Nucl Eng Des 233:163–172

    Article  CAS  Google Scholar 

  3. Sawa K, Yoshimuta S, Shiozawa S (1998) Study on storage and reprocessing concept of the high temperature engineering test reactor (HTTR) fuel. IAEA-XA9848073 1043:177–189

  4. Masson M, Grandjean S, Lacquement J, Bourg S, Delauzun JM, Lacombe J (2006) Block-type HTGR spent fuel processing: CEA investigation program and initial results. Nucl Eng Des 236:516–525

    Article  CAS  Google Scholar 

  5. Ishihara M, Sumita J, Shibata T, Iyoku T, Oku T (2004) Principle design and data of graphite components. Nucl Eng Des 233:251–260

    Article  CAS  Google Scholar 

  6. Zhou Z, Bouwman WG, Schut H, Pappas C (2014) Interpretation of X-ray diffraction patterns of (nuclear) graphite. Carbon 69:17–24

    Article  CAS  Google Scholar 

  7. Merz E (1970) On the disintegration of graphite by the formation of electrolytic graphite intercalation compounds. Kerntechnik 12:341–346

    CAS  Google Scholar 

  8. Hoogen NG, Mer E (1983) Evaluation of potential head-end procedures for graphite-containing fuel elements. Nucl Technol 61:380–387

    CAS  Google Scholar 

  9. Tian L, Wen M, Li L, Chen J (2009) Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method. Electrochim Acta 54:7313–7317

    Article  CAS  Google Scholar 

  10. Tian L, Wen M, Chen J (2010) Analysis of electrochemical disintegration process of graphite matrix. Electrochim Acta 56:985–989

    Article  CAS  Google Scholar 

  11. Fritz JOBA (1983) The electrochemistry of black carbons. Angew Chem Int Ed 22:950–975

    Article  Google Scholar 

  12. Beilby AL, Sasaki TA, Stern HM (1995) Electrochemical pretreatment of carbon electrodes as a function of potential, pH, and time. Anal Chem 67:976–980

    Article  CAS  Google Scholar 

  13. Kevin JCBC, Hathcock W (1995) Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal Chem 67:2201–2206

    Article  Google Scholar 

  14. Abdelkader AM, Cooper AJ, Dryfe RAW, Kinloch IA (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944–6956

    Article  CAS  Google Scholar 

  15. Charles JCBE, Goss A (1993) Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal Chem 65:1378–1389

    Article  Google Scholar 

  16. Liu H, Xu Q, Yan C, Qiao Y (2011) Corrosion behavior of a positive graphite electrode in vanadium redox flow battery. Electrochim Acta 56:8783–8790

    Article  CAS  Google Scholar 

  17. Fan X, Li Y, Wang S, Lu Y, Xu H, Liu J, Yan C (2015) Investigation on the pseudocapacitive characteristics of the electrochemically modified graphite electrode in electrolytes with different pH. Electrochim Acta 176:70–76

    Article  CAS  Google Scholar 

  18. Alliata D, Ring PH, Haas O, Tz RK, Siegenthaler H (1999) Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem Commun 1:5–9

    Article  CAS  Google Scholar 

  19. Bordet F, Ahlbrecht K, Tübke J, Ufheil J, Hoes T, Oetken M, Holzapfel M (2015) Anion intercalation into graphite from a sodium-containing electrolyte. Electrochim Acta 174:1317–1323

    Article  CAS  Google Scholar 

  20. Wang P, Contescu CI, Yu S, Burchell TD (2012) Pore structure development in oxidized IG-110 nuclear graphite. J Nucl Mater 430:229–238

    Article  CAS  Google Scholar 

  21. Lee DW, De Los Santos V L, Seo JW, Felix LL, Bustamante D A, Cole JM, Barnes CHW (2010) The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B 114:5723–5728

    Article  CAS  Google Scholar 

  22. Jeong H, Lee YP, Lahaye RJWE, Park M, An KH, Kim IJ, Yang C, Park CY, Ruoff RS, Lee YH (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  23. Afanasov IM, Shornikova ON, Kirilenko D, Vlasov II, Zhang L, Verbeeck J, Avdeev VV, Van Tendeloo G (2010) Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon 48:1862–1865

    Article  CAS  Google Scholar 

  24. Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714

    Article  CAS  Google Scholar 

  25. Zhan D, Ni Z, Chen W, Sun L, Luo Z, Lai L, Yu T, Wee ATS, Shen Z (2011) Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 49:1362–1366

    Article  CAS  Google Scholar 

  26. Casabianca LB, Shaibat MA, Cai WW, Park S, Piner R, Ruoff RS, Ishii Y (2010) NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J Am Chem Soc 132:5672–5676

    Article  CAS  Google Scholar 

  27. Parvez K, Wu Z, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Article  CAS  Google Scholar 

  28. He HY, Riedl T, Lerf A, Klinowski J (1996) Solid-state NMR studies of the structure of graphite oxide. J Phys Chem 100:19954–19958

    Article  CAS  Google Scholar 

  29. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  30. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  31. Weiwei C, Piner RD, Stadermann FJ, Sungjin P, Shaibat MA, Ishii Y, Dongxing Y, Velamakanni A, Sung JA, Stoller M, Jinho A, Dongmin C, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321:1815–1817

    Article  Google Scholar 

  32. Beck F, Jiang J, Krohn H (1995) Potential oscillations during galvanostatic overoxidation of graphite in aqueous sulphuric acids. J Electroanal Chem 389:161–165

    Article  Google Scholar 

  33. Rueffer M, Bejan D, Bunce NJ (2011) Graphite: an active or an inactive anode? Electrochim Acta 56:2246–2253

    Article  CAS  Google Scholar 

  34. Robert Bowling RTPA (1989) Mechanism of electrochemical activation of carbon electrodes: role of graphite lattice defects. Langmuir 5:683–688

    Article  Google Scholar 

  35. McDermott MT, Kneten K, McCreery RL (1992) Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects. J Phys Chem 96:3124–3130

    Article  CAS  Google Scholar 

  36. Freund MS, Brajtertoth A, Cotton TM, Henderson ER (1991) Scanning tunneling microscopy and atomic force microscopy in the characterization of activated graphite electrodes. Anal Chem 63:1047–1049

    Article  CAS  Google Scholar 

  37. Alsmeyer DC, McCreery ARL (1991) In situ Raman monitoring of electrochemical graphite intercalation and lattice damage in mild aqueous acids. Anal Chem 64:1528–1533

    Article  Google Scholar 

  38. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science and Technology Major Project (2014ZX06901-016) and Program for Changjiang Scholars and Innovative Research Team in University (IRT13026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfen Wen or Jianchen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wen, M., Wang, S. et al. Insights into electrochemical behavior and anodic oxidation processing of graphite matrix in aqueous solutions of sodium nitrate. J Appl Electrochem 46, 1163–1176 (2016). https://doi.org/10.1007/s10800-016-0999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0999-0

Keywords

Navigation