Skip to main content

Advertisement

Log in

Facile synthesis of robust free-standing TiO2 nanotubular membranes for biofiltration applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists of a three-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3–5 min at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 min in a buffered oxide etch solution. The overall process produces 60-μm-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin, and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grimes CA, Mor GK (2009) TiO2 nanotube arrays—synthesis, properties, and applications. Springer, Dordrecht

    Google Scholar 

  2. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939. doi:10.1002/anie.201001374

    Article  CAS  Google Scholar 

  3. Kummer KM, Taylor E, Webster TJ (2012) Biological applications of anodized TiO2 nanostructures: a review from orthopedic to stent applications. Nanosci Nanotechnol Lett 4(5):483–493. doi:10.1166/nnl.2012.1352

    Article  CAS  Google Scholar 

  4. Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38(6):4421–4435. doi:10.1016/j.ceramint.2012.03.002

    Article  CAS  Google Scholar 

  5. Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, Desai TA (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 91A(3):647–655. doi:10.1002/jbm.a.32262

    Article  CAS  Google Scholar 

  6. Oh S-H, Finones RR, Daraio C, Chen L-H, Jin S (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26(24):4938–4943. doi:10.1016/j.biomaterials.2005.01.048

    Article  CAS  Google Scholar 

  7. Brammer KS, Frandsen CJ, Jin S (2012) TiO2 nanotubes for bone regeneration. Trends Biotechnol 30(6):315–322. doi:10.1016/j.tibtech.2012.02.005

    Article  CAS  Google Scholar 

  8. Minagar S, Berndt CC, Wang J, Ivanova E, Wen CA (2012) Review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888. doi:10.1016/j.actbio.2012.04.005

    Article  CAS  Google Scholar 

  9. Brammer KS, Oh S, Gallagher JO, Jin S (2008) Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 8(3):786–793. doi:10.1021/nl072572o

    Article  CAS  Google Scholar 

  10. Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272. http://www.sciencedirect.com/science/article/pii/S0142961208008818. Accessed 14 Oct 2013

    Google Scholar 

  11. Peng L, Barczak AJ, Barbeau RA, Xiao Y, LaTempa TJ, Grimes CA, Desai TA (2009) Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett 10(1):143–148. doi:10.1021/nl903043z

    Article  Google Scholar 

  12. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28(32):4880–4888. doi:10.1016/j.biomaterials.2007.07.037

    Article  CAS  Google Scholar 

  13. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3(11):1878–1881. doi:10.1002/smll.200700412

    Article  CAS  Google Scholar 

  14. Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA (2009) Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett 9(5):1932–1936. doi:10.1021/nl9001052

    Article  CAS  Google Scholar 

  15. Losic D, Simovic S (2009) Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin Drug Deliv 6(12):1363–1381. doi:10.1517/17425240903300857

    Article  CAS  Google Scholar 

  16. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7(5):1286–1289. doi:10.1021/nl070264k

    Article  CAS  Google Scholar 

  17. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111(41):14992–14997. doi:10.1021/jp075258r

    Article  CAS  Google Scholar 

  18. Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205. doi:10.1016/j.memsci.2008.03.050

    Article  CAS  Google Scholar 

  19. Albu SP, Ghicov A, Berger S, Jha H, Schmuki P (2010) TiO2 nanotube layers: flexible and electrically active flow-through membranes. Electrochem Commun 12(10):1352–1355. doi:10.1016/j.elecom.2010.07.018

    Article  CAS  Google Scholar 

  20. Roy P, Dey T, Lee K, Kim D, Fabry B, Schmuki P (2010) Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. J Am Chem Soc 132(23):7893–7895. doi:10.1021/ja102712j

    Article  CAS  Google Scholar 

  21. Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38. doi:10.1016/j.solmat.2011.11.004

    Article  CAS  Google Scholar 

  22. Macak JM, Albu SP, Schmuki P (2007) Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys Status Solidi 1(5):181–183. doi:10.1002/pssr.200701148

    CAS  Google Scholar 

  23. Zhang G, Huang H, Zhang Y, Chan HLW, Zhou L (2007) Highly ordered nanoporous TiO2 and its photocatalytic properties. Electrochem Commun 9(12):2854–2858. http://www.sciencedirect.com/science/article/pii/S1388248107004079. Accessed 14 Oct 2013

    Google Scholar 

  24. Ali G, Chen C, Yoo S, Kum J, Cho S (2011) Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale Res Lett 6(1):332. http://www.nanoscalereslett.com/content/6/1/332. Accessed 14 Oct 2013

  25. Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22(24):6656–6664. doi:10.1021/cm102622x

    Article  CAS  Google Scholar 

  26. Kant K, Losic D (2009) A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi 3(5):139–141. doi:10.1002/pssr.200903087

    CAS  Google Scholar 

  27. Li S, Zhang G (2010) One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage. J Ceram Soc Jpn 118(4):291–294. doi:10.2109/jcersj2.118.291

    Article  Google Scholar 

  28. Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochem Commun 12(5):616–619. doi:10.1016/j.elecom.2010.02.013

    Article  CAS  Google Scholar 

  29. Liu G, Hoivik N, Wang K, Jakobsen H (2011) A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes. J Mater Sci 46(24):7931–7935. doi:10.1007/s10853-011-5927-4

    Article  CAS  Google Scholar 

  30. Fang D, Huang K, Liu S, Luo Z, Qing X, Zhang Q (2010) High-density NiTiO3/TiO2 nanotubes synthesized through sol-gel method using well-ordered TiO2 membranes as template. J Alloys Compd 498(1):37–41. http://www.sciencedirect.com/science/article/pii/S092583881000410X. Accessed 14 Oct 2013

    Google Scholar 

  31. Zhu B, Li J, Chen Q, Cao R-G, Li J, Xu D (2010) Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. Phys Chem Chem Phys 12(34):9989–9992. doi:10.1039/B925961A

    Article  CAS  Google Scholar 

  32. Li L-L, Chen Y-J, Wu H-P, Wang NS, Diau EW-G (2011) Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy Environ Sci 4(9):3420–3425. doi:10.1039/C0EE00474J

    Article  CAS  Google Scholar 

  33. Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. Am J Physiol 167(1):13–46. http://ajplegacy.physiology.org/content/167/1/13. Accessed 14 Oct 2013

    Google Scholar 

  34. Oliva A, Fariña J, Llabrés M (2000) Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. J Chrom B 749(1):25–34. doi:10.1016/S0378-4347(00)00374-1

    Article  CAS  Google Scholar 

  35. Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56(2):211–229. doi:10.1016/j.addr.2003.08.014

    Article  CAS  Google Scholar 

  36. Kang J, Erdodi G, Kennedy JP (2007) Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. J Polym Sci A 45(18):4276–4283. doi:10.1002/pola.22170

    Article  CAS  Google Scholar 

  37. Schweicher J, Nyitray C, Desai TA (2014) Membranes to achieve immunoprotection of transplanted islets. Front Biosci (accepted)

Download references

Acknowledgments

JS and TAD would like to acknowledge financial support from the Juvenile Diabetes Research Foundation. JS is also grateful for a postdoctoral fellowship (2010–2011) from the King Baudouin Foundation (Belgium) and the Belgian American Educational Foundation. All SEM imaging was performed at the Electron Microscope Facility of the San Francisco State University (SFSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejal A. Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweicher, J., Desai, T.A. Facile synthesis of robust free-standing TiO2 nanotubular membranes for biofiltration applications. J Appl Electrochem 44, 411–418 (2014). https://doi.org/10.1007/s10800-013-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0643-1

Keywords

Navigation